年代际变率振幅的季节性

IF 2.6 3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Fei Zheng, Jianping Li, Hao Wang, Yuxun Li, Xiaoning Liu, Rui Wang
{"title":"年代际变率振幅的季节性","authors":"Fei Zheng, Jianping Li, Hao Wang, Yuxun Li, Xiaoning Liu, Rui Wang","doi":"10.1175/jamc-d-23-0038.1","DOIUrl":null,"url":null,"abstract":"\nAs the understanding of decadal variability in climate systems deepens, there is a growing interest in investigating the decadal variability of seasonal mean or monthly mean variables. This study aims to understand the seasonality observed in the amplitude of decadal variability. To accomplish this, we analyze the decadal variability of the monthly mean North Atlantic Oscillation (NAO) index and North Pacific Index (NPI) over the past decades using two different calculating processes: the full smoothing (F) process and the seasonal-specific (SS) process. Our findings suggest that the F process only captures decadal variability of annual mean variables, whereas the SS process is suited for capturing the seasonality of decadal variability. We find that the seasonality in decadal variability aligns with the seasonality in interannual variability. Additionally, we explore the seasonality in decadal variability in atmospheric and oceanic variables. The seasonality in oceanic decadal variability, including sea surface temperature and salinity, is found to be weak and small. The amplitude of decadal variability in the Pacific Decadal Oscillation (PDO) is similar across different months, indicating weak seasonality in the PDO. On the other hand, decadal variability of lower tropospheric atmospheric circulation, including horizontal wind, geopotential height, and surface air temperature, exhibits significant seasonality in the extra-tropics, with the strongest decadal variability occurring in winter. Moreover, the significant seasonality in decadal variability of precipitation is observed in the tropics, with the strongest decadal variability occurring in summer. Our study provides insights into understanding the seasonality of decadal variability, which can aid in the improvement of decadal prediction of climate variability.","PeriodicalId":15027,"journal":{"name":"Journal of Applied Meteorology and Climatology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seasonality in the Amplitude of Decadal Variability\",\"authors\":\"Fei Zheng, Jianping Li, Hao Wang, Yuxun Li, Xiaoning Liu, Rui Wang\",\"doi\":\"10.1175/jamc-d-23-0038.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nAs the understanding of decadal variability in climate systems deepens, there is a growing interest in investigating the decadal variability of seasonal mean or monthly mean variables. This study aims to understand the seasonality observed in the amplitude of decadal variability. To accomplish this, we analyze the decadal variability of the monthly mean North Atlantic Oscillation (NAO) index and North Pacific Index (NPI) over the past decades using two different calculating processes: the full smoothing (F) process and the seasonal-specific (SS) process. Our findings suggest that the F process only captures decadal variability of annual mean variables, whereas the SS process is suited for capturing the seasonality of decadal variability. We find that the seasonality in decadal variability aligns with the seasonality in interannual variability. Additionally, we explore the seasonality in decadal variability in atmospheric and oceanic variables. The seasonality in oceanic decadal variability, including sea surface temperature and salinity, is found to be weak and small. The amplitude of decadal variability in the Pacific Decadal Oscillation (PDO) is similar across different months, indicating weak seasonality in the PDO. On the other hand, decadal variability of lower tropospheric atmospheric circulation, including horizontal wind, geopotential height, and surface air temperature, exhibits significant seasonality in the extra-tropics, with the strongest decadal variability occurring in winter. Moreover, the significant seasonality in decadal variability of precipitation is observed in the tropics, with the strongest decadal variability occurring in summer. Our study provides insights into understanding the seasonality of decadal variability, which can aid in the improvement of decadal prediction of climate variability.\",\"PeriodicalId\":15027,\"journal\":{\"name\":\"Journal of Applied Meteorology and Climatology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Meteorology and Climatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jamc-d-23-0038.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Meteorology and Climatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jamc-d-23-0038.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

随着对气候系统年代际变率认识的加深,人们对季节平均或月平均变量的年代际变率的研究日益感兴趣。本研究旨在了解在年代际变化幅度中观测到的季节性。为了实现这一目标,我们使用两种不同的计算过程:完全平滑(F)过程和季节特异性(SS)过程,分析了近几十年来北大西洋涛动(NAO)指数和北太平洋指数(NPI)的月平均年代际变化。研究结果表明,F过程只捕获年平均变量的年代际变率,而SS过程适合捕获年代际变率的季节性。我们发现年代际变率的季节性与年际变率的季节性一致。此外,我们还探讨了大气和海洋变量的年代际变化的季节性。海洋年代际变化(包括海面温度和盐度)的季节性较弱且较小。太平洋年代际振荡(PDO)的年代际变化幅度在不同月份相似,表明PDO的季节性较弱。另一方面,对流层低层大气环流(包括水平风、位势高度和地面气温)的年代际变率在温带地区表现出显著的季节性,其中冬季的年代际变率最强。此外,热带地区降水的年代际变化具有显著的季节性,夏季的年代际变化最强。我们的研究有助于理解年代际变率的季节性特征,有助于改进气候变率的年代际预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seasonality in the Amplitude of Decadal Variability
As the understanding of decadal variability in climate systems deepens, there is a growing interest in investigating the decadal variability of seasonal mean or monthly mean variables. This study aims to understand the seasonality observed in the amplitude of decadal variability. To accomplish this, we analyze the decadal variability of the monthly mean North Atlantic Oscillation (NAO) index and North Pacific Index (NPI) over the past decades using two different calculating processes: the full smoothing (F) process and the seasonal-specific (SS) process. Our findings suggest that the F process only captures decadal variability of annual mean variables, whereas the SS process is suited for capturing the seasonality of decadal variability. We find that the seasonality in decadal variability aligns with the seasonality in interannual variability. Additionally, we explore the seasonality in decadal variability in atmospheric and oceanic variables. The seasonality in oceanic decadal variability, including sea surface temperature and salinity, is found to be weak and small. The amplitude of decadal variability in the Pacific Decadal Oscillation (PDO) is similar across different months, indicating weak seasonality in the PDO. On the other hand, decadal variability of lower tropospheric atmospheric circulation, including horizontal wind, geopotential height, and surface air temperature, exhibits significant seasonality in the extra-tropics, with the strongest decadal variability occurring in winter. Moreover, the significant seasonality in decadal variability of precipitation is observed in the tropics, with the strongest decadal variability occurring in summer. Our study provides insights into understanding the seasonality of decadal variability, which can aid in the improvement of decadal prediction of climate variability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Meteorology and Climatology
Journal of Applied Meteorology and Climatology 地学-气象与大气科学
CiteScore
5.10
自引率
6.70%
发文量
97
审稿时长
3 months
期刊介绍: The Journal of Applied Meteorology and Climatology (JAMC) (ISSN: 1558-8424; eISSN: 1558-8432) publishes applied research on meteorology and climatology. Examples of meteorological research include topics such as weather modification, satellite meteorology, radar meteorology, boundary layer processes, physical meteorology, air pollution meteorology (including dispersion and chemical processes), agricultural and forest meteorology, mountain meteorology, and applied meteorological numerical models. Examples of climatological research include the use of climate information in impact assessments, dynamical and statistical downscaling, seasonal climate forecast applications and verification, climate risk and vulnerability, development of climate monitoring tools, and urban and local climates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信