基于有限元和神经网络的偏心开孔复合材料层合板自由振动固有频率预测模型

Q3 Engineering
Mohamed Rida Seba, S. Kebdani
{"title":"基于有限元和神经网络的偏心开孔复合材料层合板自由振动固有频率预测模型","authors":"Mohamed Rida Seba, S. Kebdani","doi":"10.46604/aiti.2022.8909","DOIUrl":null,"url":null,"abstract":"This research proposes a predictive model to identify changes in the mechanical and geometrical properties of composite plates with eccentric cutouts based on natural frequency. Finite elements (FE) and neural networks are used to develop the model based on machine learning. First, the numerical analysis of free vibration is performed by the FE model on the laminated composite plates with a stacking sequence [0/90]2s under a clamped-free (CFFF) boundary condition. The outputs of the FE model (520 configurations) are then utilized to train the artificial neural network (ANN) model through the Levenberg-Marquardt method, and the developed ANN model is then used to evaluate the influence of various parameters on the natural frequency. The results show that the changes in the mechanical and geometrical properties of composite plates have impacts on the natural frequency. Furthermore, the findings of the ANN model are substantially identical to those of the numerical model, with a small margin of error.","PeriodicalId":52314,"journal":{"name":"Advances in Technology Innovation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Finite Element and Neural Network Based Predictive Model to Determine Natural Frequency of Laminated Composite Plates with Eccentric Cutouts under Free Vibration\",\"authors\":\"Mohamed Rida Seba, S. Kebdani\",\"doi\":\"10.46604/aiti.2022.8909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research proposes a predictive model to identify changes in the mechanical and geometrical properties of composite plates with eccentric cutouts based on natural frequency. Finite elements (FE) and neural networks are used to develop the model based on machine learning. First, the numerical analysis of free vibration is performed by the FE model on the laminated composite plates with a stacking sequence [0/90]2s under a clamped-free (CFFF) boundary condition. The outputs of the FE model (520 configurations) are then utilized to train the artificial neural network (ANN) model through the Levenberg-Marquardt method, and the developed ANN model is then used to evaluate the influence of various parameters on the natural frequency. The results show that the changes in the mechanical and geometrical properties of composite plates have impacts on the natural frequency. Furthermore, the findings of the ANN model are substantially identical to those of the numerical model, with a small margin of error.\",\"PeriodicalId\":52314,\"journal\":{\"name\":\"Advances in Technology Innovation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/aiti.2022.8909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/aiti.2022.8909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于固有频率的偏心开孔复合材料板力学性能和几何性能变化预测模型。利用有限元和神经网络建立基于机器学习的模型。首先,采用有限元模型对叠置顺序为[0/90]2s的复合材料层合板在无夹紧(CFFF)边界条件下的自由振动进行数值分析。然后利用有限元模型(520组态)的输出,通过Levenberg-Marquardt方法训练人工神经网络(ANN)模型,然后利用所建立的人工神经网络模型评估各参数对固有频率的影响。结果表明,复合材料板的力学性能和几何性能的变化对其固有频率有影响。此外,人工神经网络模型的结果与数值模型的结果基本相同,误差幅度很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite Element and Neural Network Based Predictive Model to Determine Natural Frequency of Laminated Composite Plates with Eccentric Cutouts under Free Vibration
This research proposes a predictive model to identify changes in the mechanical and geometrical properties of composite plates with eccentric cutouts based on natural frequency. Finite elements (FE) and neural networks are used to develop the model based on machine learning. First, the numerical analysis of free vibration is performed by the FE model on the laminated composite plates with a stacking sequence [0/90]2s under a clamped-free (CFFF) boundary condition. The outputs of the FE model (520 configurations) are then utilized to train the artificial neural network (ANN) model through the Levenberg-Marquardt method, and the developed ANN model is then used to evaluate the influence of various parameters on the natural frequency. The results show that the changes in the mechanical and geometrical properties of composite plates have impacts on the natural frequency. Furthermore, the findings of the ANN model are substantially identical to those of the numerical model, with a small margin of error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Technology Innovation
Advances in Technology Innovation Energy-Energy Engineering and Power Technology
CiteScore
1.90
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信