{"title":"带线性功率输出的点吸收波能转换器的中保真度模型验证","authors":"E. Katsidoniotaki, Yi-Hsiang Yu, M. Göteman","doi":"10.36688/imej.5.67-75","DOIUrl":null,"url":null,"abstract":"In the preliminary design stage of a waveenergy converter (WEC), researchers need fast and reliablesimulation tools. High-fidelity numerical models are usu-ally employed to study the wave-structure interaction, butthe computational cost is demanding. As an alternative,midfidelity models can provide simulations in the order ofreal time. In this study, we operate Uppsala University’sWEC in a relatively mild sea state and model it usingWEC-Sim. The model is verified based on OpenFOAMsimulations. To analyze the ability of the midfidelitymodel to capture WEC dynamics, we investigate the systemseparately with 1, 2, and 3 degrees of freedom. We examinethe contribution of viscous phenomena, and study bothlinear and weakly nonlinear solutions provided by WEC-Sim. Our results indicate that the viscous effects can beneglected in heave and surge motion, but not for pitch.We also find that the weakly nonlinear WEC-Sim solutionsuccessfully agrees with the computational fluid dynam-ics, whereas the linear solution could suggest misleadingresults.","PeriodicalId":36111,"journal":{"name":"International Marine Energy Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Midfidelity model verification for a point-absorbing wave energy converter with linear power take-off\",\"authors\":\"E. Katsidoniotaki, Yi-Hsiang Yu, M. Göteman\",\"doi\":\"10.36688/imej.5.67-75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the preliminary design stage of a waveenergy converter (WEC), researchers need fast and reliablesimulation tools. High-fidelity numerical models are usu-ally employed to study the wave-structure interaction, butthe computational cost is demanding. As an alternative,midfidelity models can provide simulations in the order ofreal time. In this study, we operate Uppsala University’sWEC in a relatively mild sea state and model it usingWEC-Sim. The model is verified based on OpenFOAMsimulations. To analyze the ability of the midfidelitymodel to capture WEC dynamics, we investigate the systemseparately with 1, 2, and 3 degrees of freedom. We examinethe contribution of viscous phenomena, and study bothlinear and weakly nonlinear solutions provided by WEC-Sim. Our results indicate that the viscous effects can beneglected in heave and surge motion, but not for pitch.We also find that the weakly nonlinear WEC-Sim solutionsuccessfully agrees with the computational fluid dynam-ics, whereas the linear solution could suggest misleadingresults.\",\"PeriodicalId\":36111,\"journal\":{\"name\":\"International Marine Energy Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Marine Energy Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36688/imej.5.67-75\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Marine Energy Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36688/imej.5.67-75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Midfidelity model verification for a point-absorbing wave energy converter with linear power take-off
In the preliminary design stage of a waveenergy converter (WEC), researchers need fast and reliablesimulation tools. High-fidelity numerical models are usu-ally employed to study the wave-structure interaction, butthe computational cost is demanding. As an alternative,midfidelity models can provide simulations in the order ofreal time. In this study, we operate Uppsala University’sWEC in a relatively mild sea state and model it usingWEC-Sim. The model is verified based on OpenFOAMsimulations. To analyze the ability of the midfidelitymodel to capture WEC dynamics, we investigate the systemseparately with 1, 2, and 3 degrees of freedom. We examinethe contribution of viscous phenomena, and study bothlinear and weakly nonlinear solutions provided by WEC-Sim. Our results indicate that the viscous effects can beneglected in heave and surge motion, but not for pitch.We also find that the weakly nonlinear WEC-Sim solutionsuccessfully agrees with the computational fluid dynam-ics, whereas the linear solution could suggest misleadingresults.