线性规划的随机投影:一个改进的检索阶段

Q2 Mathematics
Leo Liberti, Benedetto Manca, Pierre-Louis Poirion
{"title":"线性规划的随机投影:一个改进的检索阶段","authors":"Leo Liberti, Benedetto Manca, Pierre-Louis Poirion","doi":"10.1145/3617506","DOIUrl":null,"url":null,"abstract":"One way to solve very large linear programs in standard form is to apply a random projection to the constraints, then solve the projected linear program [63]. This will yield a guaranteed bound on the optimal value, as well as a solution to the projected linear program. The process of constructing an approximate solution of the original linear program is called solution retrieval. We improve theoretical bounds on the approximation error of the retrieved solution obtained as in [42], and propose an improved retrieval method based on alternating projections. We show empirical results illustrating the practical benefits of the new approach.","PeriodicalId":53707,"journal":{"name":"Journal of Experimental Algorithmics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random projections for Linear Programming: an improved retrieval phase\",\"authors\":\"Leo Liberti, Benedetto Manca, Pierre-Louis Poirion\",\"doi\":\"10.1145/3617506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One way to solve very large linear programs in standard form is to apply a random projection to the constraints, then solve the projected linear program [63]. This will yield a guaranteed bound on the optimal value, as well as a solution to the projected linear program. The process of constructing an approximate solution of the original linear program is called solution retrieval. We improve theoretical bounds on the approximation error of the retrieved solution obtained as in [42], and propose an improved retrieval method based on alternating projections. We show empirical results illustrating the practical benefits of the new approach.\",\"PeriodicalId\":53707,\"journal\":{\"name\":\"Journal of Experimental Algorithmics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Algorithmics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3617506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Algorithmics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3617506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

求解标准形式的大型线性规划的一种方法是将随机投影应用于约束,然后求解投影的线性规划[63]。这将产生最优值的保证界,以及投影线性规划的解。构造原始线性规划的近似解的过程称为解检索。我们改进了[42]中获得的检索解的近似误差的理论界,并提出了一种基于交替投影的改进检索方法。我们展示了实证结果,说明了新方法的实际效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random projections for Linear Programming: an improved retrieval phase
One way to solve very large linear programs in standard form is to apply a random projection to the constraints, then solve the projected linear program [63]. This will yield a guaranteed bound on the optimal value, as well as a solution to the projected linear program. The process of constructing an approximate solution of the original linear program is called solution retrieval. We improve theoretical bounds on the approximation error of the retrieved solution obtained as in [42], and propose an improved retrieval method based on alternating projections. We show empirical results illustrating the practical benefits of the new approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Experimental Algorithmics
Journal of Experimental Algorithmics Mathematics-Theoretical Computer Science
CiteScore
3.10
自引率
0.00%
发文量
29
期刊介绍: The ACM JEA is a high-quality, refereed, archival journal devoted to the study of discrete algorithms and data structures through a combination of experimentation and classical analysis and design techniques. It focuses on the following areas in algorithms and data structures: ■combinatorial optimization ■computational biology ■computational geometry ■graph manipulation ■graphics ■heuristics ■network design ■parallel processing ■routing and scheduling ■searching and sorting ■VLSI design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信