具有小漂移的随机漫步的运行最大值的边界

IF 0.6 4区 数学 Q4 STATISTICS & PROBABILITY
Ofer Busani, T. Seppalainen
{"title":"具有小漂移的随机漫步的运行最大值的边界","authors":"Ofer Busani, T. Seppalainen","doi":"10.30757/alea.v19-03","DOIUrl":null,"url":null,"abstract":"We derive a lower bound for the probability that a random walk with i.i.d.\\ increments and small negative drift $\\mu$ exceeds the value $x>0$ by time $N$. When the moment generating functions are bounded in an interval around the origin, this probability can be bounded below by $1-O(x|\\mu| \\log N)$. The approach is elementary and does not use strong approximation theorems.","PeriodicalId":49244,"journal":{"name":"Alea-Latin American Journal of Probability and Mathematical Statistics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bound on the running maximum of a random walk with small drift\",\"authors\":\"Ofer Busani, T. Seppalainen\",\"doi\":\"10.30757/alea.v19-03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive a lower bound for the probability that a random walk with i.i.d.\\\\ increments and small negative drift $\\\\mu$ exceeds the value $x>0$ by time $N$. When the moment generating functions are bounded in an interval around the origin, this probability can be bounded below by $1-O(x|\\\\mu| \\\\log N)$. The approach is elementary and does not use strong approximation theorems.\",\"PeriodicalId\":49244,\"journal\":{\"name\":\"Alea-Latin American Journal of Probability and Mathematical Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alea-Latin American Journal of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.30757/alea.v19-03\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alea-Latin American Journal of Probability and Mathematical Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v19-03","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

我们推导了一个概率的下界,即具有i.i.d增量和小负漂移$\mu$的随机漫步在时间$N$上超过$x>0$的值。当矩生成函数在原点附近的一个区间内有界时,这个概率可以用$1-O(x|\mu| \log N)$为界。该方法是初等的,不使用强逼近定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bound on the running maximum of a random walk with small drift
We derive a lower bound for the probability that a random walk with i.i.d.\ increments and small negative drift $\mu$ exceeds the value $x>0$ by time $N$. When the moment generating functions are bounded in an interval around the origin, this probability can be bounded below by $1-O(x|\mu| \log N)$. The approach is elementary and does not use strong approximation theorems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
48
期刊介绍: ALEA publishes research articles in probability theory, stochastic processes, mathematical statistics, and their applications. It publishes also review articles of subjects which developed considerably in recent years. All articles submitted go through a rigorous refereeing process by peers and are published immediately after accepted. ALEA is an electronic journal of the Latin-american probability and statistical community which provides open access to all of its content and uses only free programs. Authors are allowed to deposit their published article into their institutional repository, freely and with no embargo, as long as they acknowledge the source of the paper. ALEA is affiliated with the Institute of Mathematical Statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信