非陷波渐近双曲流形上波的逆Strichartz估计及其应用

IF 2.1 2区 数学 Q1 MATHEMATICS
Y. Sire, C. Sogge, Chengbo Wang, Junyong Zhang
{"title":"非陷波渐近双曲流形上波的逆Strichartz估计及其应用","authors":"Y. Sire, C. Sogge, Chengbo Wang, Junyong Zhang","doi":"10.1080/03605302.2022.2047724","DOIUrl":null,"url":null,"abstract":"Abstract We provide reversed Strichartz estimates for the shifted wave equations on non-trapping asymptotically hyperbolic manifolds using cluster estimates for spectral projectors proved previously in such generality. As a consequence, we solve a problem left open in Sire et al [Trans. AMS 373(2020):7639-7668] about the endpoint case for global well-posedness of nonlinear wave equations. We also provide estimates in this context for the maximal wave operator.","PeriodicalId":50657,"journal":{"name":"Communications in Partial Differential Equations","volume":"47 1","pages":"1124 - 1132"},"PeriodicalIF":2.1000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Reversed Strichartz estimates for wave on non-trapping asymptotically hyperbolic manifolds and applications\",\"authors\":\"Y. Sire, C. Sogge, Chengbo Wang, Junyong Zhang\",\"doi\":\"10.1080/03605302.2022.2047724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We provide reversed Strichartz estimates for the shifted wave equations on non-trapping asymptotically hyperbolic manifolds using cluster estimates for spectral projectors proved previously in such generality. As a consequence, we solve a problem left open in Sire et al [Trans. AMS 373(2020):7639-7668] about the endpoint case for global well-posedness of nonlinear wave equations. We also provide estimates in this context for the maximal wave operator.\",\"PeriodicalId\":50657,\"journal\":{\"name\":\"Communications in Partial Differential Equations\",\"volume\":\"47 1\",\"pages\":\"1124 - 1132\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03605302.2022.2047724\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2022.2047724","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

摘要我们利用先前证明的谱投影的聚类估计,为非陷波渐近双曲流形上的位移波方程提供了逆Strichartz估计。因此,我们解决了Sire等人[Trans.AMS 373(2020):7639-7668]中留下的关于非线性波动方程的全局适定性的端点情况的问题。在这种情况下,我们还提供了对最大波算子的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reversed Strichartz estimates for wave on non-trapping asymptotically hyperbolic manifolds and applications
Abstract We provide reversed Strichartz estimates for the shifted wave equations on non-trapping asymptotically hyperbolic manifolds using cluster estimates for spectral projectors proved previously in such generality. As a consequence, we solve a problem left open in Sire et al [Trans. AMS 373(2020):7639-7668] about the endpoint case for global well-posedness of nonlinear wave equations. We also provide estimates in this context for the maximal wave operator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: This journal aims to publish high quality papers concerning any theoretical aspect of partial differential equations, as well as its applications to other areas of mathematics. Suitability of any paper is at the discretion of the editors. We seek to present the most significant advances in this central field to a wide readership which includes researchers and graduate students in mathematics and the more mathematical aspects of physics and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信