{"title":"非陷波渐近双曲流形上波的逆Strichartz估计及其应用","authors":"Y. Sire, C. Sogge, Chengbo Wang, Junyong Zhang","doi":"10.1080/03605302.2022.2047724","DOIUrl":null,"url":null,"abstract":"Abstract We provide reversed Strichartz estimates for the shifted wave equations on non-trapping asymptotically hyperbolic manifolds using cluster estimates for spectral projectors proved previously in such generality. As a consequence, we solve a problem left open in Sire et al [Trans. AMS 373(2020):7639-7668] about the endpoint case for global well-posedness of nonlinear wave equations. We also provide estimates in this context for the maximal wave operator.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Reversed Strichartz estimates for wave on non-trapping asymptotically hyperbolic manifolds and applications\",\"authors\":\"Y. Sire, C. Sogge, Chengbo Wang, Junyong Zhang\",\"doi\":\"10.1080/03605302.2022.2047724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We provide reversed Strichartz estimates for the shifted wave equations on non-trapping asymptotically hyperbolic manifolds using cluster estimates for spectral projectors proved previously in such generality. As a consequence, we solve a problem left open in Sire et al [Trans. AMS 373(2020):7639-7668] about the endpoint case for global well-posedness of nonlinear wave equations. We also provide estimates in this context for the maximal wave operator.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03605302.2022.2047724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2022.2047724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Reversed Strichartz estimates for wave on non-trapping asymptotically hyperbolic manifolds and applications
Abstract We provide reversed Strichartz estimates for the shifted wave equations on non-trapping asymptotically hyperbolic manifolds using cluster estimates for spectral projectors proved previously in such generality. As a consequence, we solve a problem left open in Sire et al [Trans. AMS 373(2020):7639-7668] about the endpoint case for global well-posedness of nonlinear wave equations. We also provide estimates in this context for the maximal wave operator.