Plabic R-Matrices

IF 1.1 2区 数学 Q1 MATHEMATICS
Sunita Chepuri
{"title":"Plabic R-Matrices","authors":"Sunita Chepuri","doi":"10.4171/prims/56-2-2","DOIUrl":null,"url":null,"abstract":"Postnikov's plabic graphs in a disk are used to parametrize totally positive Grassmannians. In recent years plabic graphs have found numerous applications in math and physics. One of the key features of the theory is the fact that if a plabic graph is reduced, the face weights can be uniquely recovered from boundary measurements. On surfaces more complicated than a disk this property is lost. In this paper we undertake a comprehensive study of a certain semi-local transformation of weights for plabic networks on a cylinder that preserve boundary measurements. We call this a plabic R-matrix. We show that plabic R-matrices have underlying cluster algebra structure, generalizing recent work of Inoue-Lam-Pylyavskyy. Special cases of transformations we consider include geometric R-matrices appearing in Berenstein-Kazhdan theory of geometric crystals, and also certain transformations appearing in a recent work of Goncharov-Shen.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2018-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/prims/56-2-2","citationCount":"3","resultStr":"{\"title\":\"Plabic R-Matrices\",\"authors\":\"Sunita Chepuri\",\"doi\":\"10.4171/prims/56-2-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Postnikov's plabic graphs in a disk are used to parametrize totally positive Grassmannians. In recent years plabic graphs have found numerous applications in math and physics. One of the key features of the theory is the fact that if a plabic graph is reduced, the face weights can be uniquely recovered from boundary measurements. On surfaces more complicated than a disk this property is lost. In this paper we undertake a comprehensive study of a certain semi-local transformation of weights for plabic networks on a cylinder that preserve boundary measurements. We call this a plabic R-matrix. We show that plabic R-matrices have underlying cluster algebra structure, generalizing recent work of Inoue-Lam-Pylyavskyy. Special cases of transformations we consider include geometric R-matrices appearing in Berenstein-Kazhdan theory of geometric crystals, and also certain transformations appearing in a recent work of Goncharov-Shen.\",\"PeriodicalId\":54528,\"journal\":{\"name\":\"Publications of the Research Institute for Mathematical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/prims/56-2-2\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Research Institute for Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/prims/56-2-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/prims/56-2-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

Postnikov在圆盘中的平面图被用来参数化全正Grassmann。近年来,平面图在数学和物理学中有许多应用。该理论的一个关键特征是,如果平面图被约简,则可以从边界测量中唯一地恢复面权重。在比磁盘更复杂的表面上,此属性将丢失。在本文中,我们对保留边界测量的圆柱体上的平面网络的权重的某种半局部变换进行了全面的研究。我们称之为平面R矩阵。我们证明了平面R-矩阵具有潜在的簇代数结构,推广了Inoue-Lam-Pylyavskyy最近的工作。我们考虑的变换的特殊情况包括几何晶体的Berenstein-Kazhdan理论中出现的几何R-矩阵,以及Goncharov Shen最近工作中出现的某些变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plabic R-Matrices
Postnikov's plabic graphs in a disk are used to parametrize totally positive Grassmannians. In recent years plabic graphs have found numerous applications in math and physics. One of the key features of the theory is the fact that if a plabic graph is reduced, the face weights can be uniquely recovered from boundary measurements. On surfaces more complicated than a disk this property is lost. In this paper we undertake a comprehensive study of a certain semi-local transformation of weights for plabic networks on a cylinder that preserve boundary measurements. We call this a plabic R-matrix. We show that plabic R-matrices have underlying cluster algebra structure, generalizing recent work of Inoue-Lam-Pylyavskyy. Special cases of transformations we consider include geometric R-matrices appearing in Berenstein-Kazhdan theory of geometric crystals, and also certain transformations appearing in a recent work of Goncharov-Shen.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信