求解n维Wiener过程的非线性分数阶随机积分微分方程的一种数值方法

IF 1.1 Q2 MATHEMATICS, APPLIED
Elnaz Aryani, A. Babaei, Ali Valinejad
{"title":"求解n维Wiener过程的非线性分数阶随机积分微分方程的一种数值方法","authors":"Elnaz Aryani, A. Babaei, Ali Valinejad","doi":"10.22034/CMDE.2020.41130.1784","DOIUrl":null,"url":null,"abstract":"This paper deals with the numerical solution of nonlinear fractional stochastic integro-differential equations with the n-dimensional Wiener process. A new computational method is employed to approximate the solution of the considered problem. This technique is based on the modified hat functions, the Caputo derivative and a suitable numerical integration rule. Error estimate of the method is investigated in detail. At the end, illustrative examples are included to demonstrate the validity and effectiveness of the presented approach.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A numerical technique for solving nonlinear fractional stochastic integro-differential equations with n-dimensional Wiener process\",\"authors\":\"Elnaz Aryani, A. Babaei, Ali Valinejad\",\"doi\":\"10.22034/CMDE.2020.41130.1784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the numerical solution of nonlinear fractional stochastic integro-differential equations with the n-dimensional Wiener process. A new computational method is employed to approximate the solution of the considered problem. This technique is based on the modified hat functions, the Caputo derivative and a suitable numerical integration rule. Error estimate of the method is investigated in detail. At the end, illustrative examples are included to demonstrate the validity and effectiveness of the presented approach.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2020.41130.1784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.41130.1784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

本文研究具有n维Wiener过程的非线性分数阶随机积分微分方程的数值解。采用一种新的计算方法来逼近所考虑问题的解。该技术基于修正的hat函数、Caputo导数和适当的数值积分规则。详细研究了该方法的误差估计。最后,举例说明了该方法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A numerical technique for solving nonlinear fractional stochastic integro-differential equations with n-dimensional Wiener process
This paper deals with the numerical solution of nonlinear fractional stochastic integro-differential equations with the n-dimensional Wiener process. A new computational method is employed to approximate the solution of the considered problem. This technique is based on the modified hat functions, the Caputo derivative and a suitable numerical integration rule. Error estimate of the method is investigated in detail. At the end, illustrative examples are included to demonstrate the validity and effectiveness of the presented approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信