仿射随机波动率模型的长时间轨迹大偏差和重要性抽样

Pub Date : 2021-03-01 DOI:10.1017/apr.2020.58
Z. Grbac, David Krief, P. Tankov
{"title":"仿射随机波动率模型的长时间轨迹大偏差和重要性抽样","authors":"Z. Grbac, David Krief, P. Tankov","doi":"10.1017/apr.2020.58","DOIUrl":null,"url":null,"abstract":"Abstract We establish a pathwise large deviation principle for affine stochastic volatility models introduced by Keller-Ressel (2011), and present an application to variance reduction for Monte Carlo computation of prices of path-dependent options in these models, extending the method developed by Genin and Tankov (2020) for exponential Lévy models. To this end, we apply an exponentially affine change of measure and use Varadhan’s lemma, in the fashion of Guasoni and Robertson (2008) and Robertson (2010), to approximate the problem of finding the measure that minimizes the variance of the Monte Carlo estimator. We test the method on the Heston model with and without jumps to demonstrate its numerical efficiency.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/apr.2020.58","citationCount":"1","resultStr":"{\"title\":\"Long-Time Trajectorial Large Deviations and Importance Sampling for Affine Stochastic Volatility Models\",\"authors\":\"Z. Grbac, David Krief, P. Tankov\",\"doi\":\"10.1017/apr.2020.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We establish a pathwise large deviation principle for affine stochastic volatility models introduced by Keller-Ressel (2011), and present an application to variance reduction for Monte Carlo computation of prices of path-dependent options in these models, extending the method developed by Genin and Tankov (2020) for exponential Lévy models. To this end, we apply an exponentially affine change of measure and use Varadhan’s lemma, in the fashion of Guasoni and Robertson (2008) and Robertson (2010), to approximate the problem of finding the measure that minimizes the variance of the Monte Carlo estimator. We test the method on the Heston model with and without jumps to demonstrate its numerical efficiency.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/apr.2020.58\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/apr.2020.58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2020.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文建立了Keller-Ressel(2011)引入的仿射随机波动模型的路径大偏差原理,并将其应用于这些模型中路径相关期权价格的蒙特卡罗计算的方差缩减,扩展了Genin和Tankov(2020)对指数型lsamvy模型的方法。为此,我们以Guasoni和Robertson(2008)和Robertson(2010)的方式,应用指数仿射测度变化并使用Varadhan引理,来近似寻找使蒙特卡洛估计量方差最小化的测度的问题。在有跳跃和无跳跃的Heston模型上进行了实验,验证了该方法的数值有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Long-Time Trajectorial Large Deviations and Importance Sampling for Affine Stochastic Volatility Models
Abstract We establish a pathwise large deviation principle for affine stochastic volatility models introduced by Keller-Ressel (2011), and present an application to variance reduction for Monte Carlo computation of prices of path-dependent options in these models, extending the method developed by Genin and Tankov (2020) for exponential Lévy models. To this end, we apply an exponentially affine change of measure and use Varadhan’s lemma, in the fashion of Guasoni and Robertson (2008) and Robertson (2010), to approximate the problem of finding the measure that minimizes the variance of the Monte Carlo estimator. We test the method on the Heston model with and without jumps to demonstrate its numerical efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信