关于广义Sierpinski图的迫零数

IF 0.6 Q3 MATHEMATICS
E. Vatandoost, F. Ramezani, S. Alikhani
{"title":"关于广义Sierpinski图的迫零数","authors":"E. Vatandoost, F. Ramezani, S. Alikhani","doi":"10.22108/TOC.2018.101107.1463","DOIUrl":null,"url":null,"abstract":"In this article we study the Zero forcing number of Generalized Sierpi'{n}ski graphs $S(G,t)$‎. ‎More precisely‎, ‎we obtain a general lower bound on the Zero forcing number of $S(G,t)$ and we show that this bound is tight‎. ‎In particular‎, ‎we consider the cases in which the base graph $G$ is a star‎, ‎path‎, ‎a cycle or a complete graph‎.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"8 1","pages":"41-50"},"PeriodicalIF":0.6000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the zero forcing number of generalized Sierpinski graphs\",\"authors\":\"E. Vatandoost, F. Ramezani, S. Alikhani\",\"doi\":\"10.22108/TOC.2018.101107.1463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we study the Zero forcing number of Generalized Sierpi'{n}ski graphs $S(G,t)$‎. ‎More precisely‎, ‎we obtain a general lower bound on the Zero forcing number of $S(G,t)$ and we show that this bound is tight‎. ‎In particular‎, ‎we consider the cases in which the base graph $G$ is a star‎, ‎path‎, ‎a cycle or a complete graph‎.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"8 1\",\"pages\":\"41-50\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2018.101107.1463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2018.101107.1463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了广义Sierpi′{n}ski图$S(G,t)$ _的零强迫数。更准确地说,我们得到了S(G,t)的零强迫数的一般下界,并证明了这个下界是紧的。特别地,我们考虑基图$G$是星形图、路径图、循环图或完整图的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the zero forcing number of generalized Sierpinski graphs
In this article we study the Zero forcing number of Generalized Sierpi'{n}ski graphs $S(G,t)$‎. ‎More precisely‎, ‎we obtain a general lower bound on the Zero forcing number of $S(G,t)$ and we show that this bound is tight‎. ‎In particular‎, ‎we consider the cases in which the base graph $G$ is a star‎, ‎path‎, ‎a cycle or a complete graph‎.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信