J. Hou, Qiuyue Li, Pu Yan, Li Xu, Mingxu Li, N. He
{"title":"中国典型草原植被高度组合的普遍规律及区域变化","authors":"J. Hou, Qiuyue Li, Pu Yan, Li Xu, Mingxu Li, N. He","doi":"10.1093/jpe/rtac048","DOIUrl":null,"url":null,"abstract":"\n Measuring plant heights one by one is an important way to explore the height structure of grassland plant communities, and can be used to analyze the universal rules and regional variations of vegetation growth under environmental change. We chose grasslands in three plateaus, namely Tibetan Plateau (TP), Mongolian Plateau (MP) and Loess Plateau (LP), and set up three grassland transects along the precipitation gradients from meadow, steppe to desert. The mean height of grassland vegetation is 30.38 ± 22.44 cm, and the mean height from TP, MP to LP increases significantly. The aggregation of grassland vegetation presents a positive skew distribution (0.91, 3.60), and the community aggregation from TP, MP to LP tends to a normal distribution (0, 3). However, for TP, there is an exponential distribution in community aggregation of meadows, and a uniform distribution in that of desert. The explanatory effect of climate and soil nutrients on the variation of mean height in each region is more than 70%, while the explanatory effect on the community aggregation is the highest at TP, only 29%. From TP, MP to LP, response intensity of mean height to environmental changes increased significantly, and the influence of temperature and precipitation gradually increased, the influence of radiation, wind speed, and nutrients gradually weakened, and the synergy among environmental factors strengthened. Our study shows that normal distribution is a universal rule of grassland height construction, and the synergy of environmental factors varies from region to region.","PeriodicalId":50085,"journal":{"name":"Journal of Plant Ecology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal rule and regional variation of vegetation height assembly of typical grasslands in China\",\"authors\":\"J. Hou, Qiuyue Li, Pu Yan, Li Xu, Mingxu Li, N. He\",\"doi\":\"10.1093/jpe/rtac048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Measuring plant heights one by one is an important way to explore the height structure of grassland plant communities, and can be used to analyze the universal rules and regional variations of vegetation growth under environmental change. We chose grasslands in three plateaus, namely Tibetan Plateau (TP), Mongolian Plateau (MP) and Loess Plateau (LP), and set up three grassland transects along the precipitation gradients from meadow, steppe to desert. The mean height of grassland vegetation is 30.38 ± 22.44 cm, and the mean height from TP, MP to LP increases significantly. The aggregation of grassland vegetation presents a positive skew distribution (0.91, 3.60), and the community aggregation from TP, MP to LP tends to a normal distribution (0, 3). However, for TP, there is an exponential distribution in community aggregation of meadows, and a uniform distribution in that of desert. The explanatory effect of climate and soil nutrients on the variation of mean height in each region is more than 70%, while the explanatory effect on the community aggregation is the highest at TP, only 29%. From TP, MP to LP, response intensity of mean height to environmental changes increased significantly, and the influence of temperature and precipitation gradually increased, the influence of radiation, wind speed, and nutrients gradually weakened, and the synergy among environmental factors strengthened. Our study shows that normal distribution is a universal rule of grassland height construction, and the synergy of environmental factors varies from region to region.\",\"PeriodicalId\":50085,\"journal\":{\"name\":\"Journal of Plant Ecology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jpe/rtac048\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jpe/rtac048","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Universal rule and regional variation of vegetation height assembly of typical grasslands in China
Measuring plant heights one by one is an important way to explore the height structure of grassland plant communities, and can be used to analyze the universal rules and regional variations of vegetation growth under environmental change. We chose grasslands in three plateaus, namely Tibetan Plateau (TP), Mongolian Plateau (MP) and Loess Plateau (LP), and set up three grassland transects along the precipitation gradients from meadow, steppe to desert. The mean height of grassland vegetation is 30.38 ± 22.44 cm, and the mean height from TP, MP to LP increases significantly. The aggregation of grassland vegetation presents a positive skew distribution (0.91, 3.60), and the community aggregation from TP, MP to LP tends to a normal distribution (0, 3). However, for TP, there is an exponential distribution in community aggregation of meadows, and a uniform distribution in that of desert. The explanatory effect of climate and soil nutrients on the variation of mean height in each region is more than 70%, while the explanatory effect on the community aggregation is the highest at TP, only 29%. From TP, MP to LP, response intensity of mean height to environmental changes increased significantly, and the influence of temperature and precipitation gradually increased, the influence of radiation, wind speed, and nutrients gradually weakened, and the synergy among environmental factors strengthened. Our study shows that normal distribution is a universal rule of grassland height construction, and the synergy of environmental factors varies from region to region.
期刊介绍:
Journal of Plant Ecology (JPE) serves as an important medium for ecologists to present research findings and discuss challenging issues in the broad field of plants and their interactions with biotic and abiotic environment. The JPE will cover all aspects of plant ecology, including plant ecophysiology, population ecology, community ecology, ecosystem ecology and landscape ecology as well as conservation ecology, evolutionary ecology, and theoretical ecology.