{"title":"复monge - ampante测度的弱收敛性","authors":"Mohamed El Kadiri","doi":"10.1016/j.indag.2023.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></math></span> be a decreasing sequence of psh functions in the domain of definition <span><math><mi>D</mi></math></span> of the Monge–Ampère operator on a domain <span><math><mi>Ω</mi></math></span> of <span><math><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> such that <span><math><mrow><mi>u</mi><mo>=</mo><msub><mrow><mo>inf</mo></mrow><mrow><mi>j</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></math></span> is plurisubharmonic on <span><math><mi>Ω</mi></math></span>. In this paper we are interested in the problem of finding conditions insuring that <span><span><span><math><mrow><munder><mrow><mo>lim</mo></mrow><mrow><mi>j</mi><mo>→</mo><mo>+</mo><mi>∞</mi></mrow></munder><mo>∫</mo><mi>φ</mi><msup><mrow><mrow><mo>(</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><mo>∫</mo><mi>φ</mi><mo>NP</mo><msup><mrow><mrow><mo>(</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><mi>u</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span></span></span>for any continuous function on <span><math><mi>Ω</mi></math></span> with compact support, where <span><math><mrow><mo>NP</mo><msup><mrow><mrow><mo>(</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><mi>u</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> is the nonpolar part of <span><math><msup><mrow><mrow><mo>(</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><mi>u</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></math></span>, and conditions implying that <span><math><mrow><mi>u</mi><mo>∈</mo><mi>D</mi></mrow></math></span>. For <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>=</mo><mo>max</mo><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mo>−</mo><mi>j</mi><mo>)</mo></mrow></mrow></math></span> these conditions imply also that <span><span><span><math><mrow><munder><mrow><mo>lim</mo></mrow><mrow><mi>j</mi><mo>→</mo><mo>+</mo><mi>∞</mi></mrow></munder><msub><mrow><mo>∫</mo></mrow><mrow><mi>K</mi></mrow></msub><msup><mrow><mrow><mo>(</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>K</mi></mrow></msub><mo>NP</mo><msup><mrow><mrow><mo>(</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><mi>u</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span></span></span>for any compact set <span><math><mrow><mi>K</mi><mo>⊂</mo><mrow><mo>{</mo><mi>u</mi><mo>></mo><mo>−</mo><mi>∞</mi><mo>}</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remarks on weak convergence of complex Monge–Ampère measures\",\"authors\":\"Mohamed El Kadiri\",\"doi\":\"10.1016/j.indag.2023.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></math></span> be a decreasing sequence of psh functions in the domain of definition <span><math><mi>D</mi></math></span> of the Monge–Ampère operator on a domain <span><math><mi>Ω</mi></math></span> of <span><math><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> such that <span><math><mrow><mi>u</mi><mo>=</mo><msub><mrow><mo>inf</mo></mrow><mrow><mi>j</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></math></span> is plurisubharmonic on <span><math><mi>Ω</mi></math></span>. In this paper we are interested in the problem of finding conditions insuring that <span><span><span><math><mrow><munder><mrow><mo>lim</mo></mrow><mrow><mi>j</mi><mo>→</mo><mo>+</mo><mi>∞</mi></mrow></munder><mo>∫</mo><mi>φ</mi><msup><mrow><mrow><mo>(</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><mo>∫</mo><mi>φ</mi><mo>NP</mo><msup><mrow><mrow><mo>(</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><mi>u</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span></span></span>for any continuous function on <span><math><mi>Ω</mi></math></span> with compact support, where <span><math><mrow><mo>NP</mo><msup><mrow><mrow><mo>(</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><mi>u</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> is the nonpolar part of <span><math><msup><mrow><mrow><mo>(</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><mi>u</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></math></span>, and conditions implying that <span><math><mrow><mi>u</mi><mo>∈</mo><mi>D</mi></mrow></math></span>. For <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>=</mo><mo>max</mo><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mo>−</mo><mi>j</mi><mo>)</mo></mrow></mrow></math></span> these conditions imply also that <span><span><span><math><mrow><munder><mrow><mo>lim</mo></mrow><mrow><mi>j</mi><mo>→</mo><mo>+</mo><mi>∞</mi></mrow></munder><msub><mrow><mo>∫</mo></mrow><mrow><mi>K</mi></mrow></msub><msup><mrow><mrow><mo>(</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>K</mi></mrow></msub><mo>NP</mo><msup><mrow><mrow><mo>(</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><mi>u</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span></span></span>for any compact set <span><math><mrow><mi>K</mi><mo>⊂</mo><mrow><mo>{</mo><mi>u</mi><mo>></mo><mo>−</mo><mi>∞</mi><mo>}</mo></mrow></mrow></math></span>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357723000708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Remarks on weak convergence of complex Monge–Ampère measures
Let be a decreasing sequence of psh functions in the domain of definition of the Monge–Ampère operator on a domain of such that is plurisubharmonic on . In this paper we are interested in the problem of finding conditions insuring that for any continuous function on with compact support, where is the nonpolar part of , and conditions implying that . For these conditions imply also that for any compact set .