{"title":"复monge - ampante测度的弱收敛性","authors":"Mohamed El Kadiri","doi":"10.1016/j.indag.2023.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></math></span> be a decreasing sequence of psh functions in the domain of definition <span><math><mi>D</mi></math></span> of the Monge–Ampère operator on a domain <span><math><mi>Ω</mi></math></span> of <span><math><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> such that <span><math><mrow><mi>u</mi><mo>=</mo><msub><mrow><mo>inf</mo></mrow><mrow><mi>j</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></math></span> is plurisubharmonic on <span><math><mi>Ω</mi></math></span>. In this paper we are interested in the problem of finding conditions insuring that <span><span><span><math><mrow><munder><mrow><mo>lim</mo></mrow><mrow><mi>j</mi><mo>→</mo><mo>+</mo><mi>∞</mi></mrow></munder><mo>∫</mo><mi>φ</mi><msup><mrow><mrow><mo>(</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><mo>∫</mo><mi>φ</mi><mo>NP</mo><msup><mrow><mrow><mo>(</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><mi>u</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span></span></span>for any continuous function on <span><math><mi>Ω</mi></math></span> with compact support, where <span><math><mrow><mo>NP</mo><msup><mrow><mrow><mo>(</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><mi>u</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> is the nonpolar part of <span><math><msup><mrow><mrow><mo>(</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><mi>u</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></math></span>, and conditions implying that <span><math><mrow><mi>u</mi><mo>∈</mo><mi>D</mi></mrow></math></span>. For <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>=</mo><mo>max</mo><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mo>−</mo><mi>j</mi><mo>)</mo></mrow></mrow></math></span> these conditions imply also that <span><span><span><math><mrow><munder><mrow><mo>lim</mo></mrow><mrow><mi>j</mi><mo>→</mo><mo>+</mo><mi>∞</mi></mrow></munder><msub><mrow><mo>∫</mo></mrow><mrow><mi>K</mi></mrow></msub><msup><mrow><mrow><mo>(</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>K</mi></mrow></msub><mo>NP</mo><msup><mrow><mrow><mo>(</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><mi>u</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span></span></span>for any compact set <span><math><mrow><mi>K</mi><mo>⊂</mo><mrow><mo>{</mo><mi>u</mi><mo>></mo><mo>−</mo><mi>∞</mi><mo>}</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 1","pages":"Pages 28-36"},"PeriodicalIF":0.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remarks on weak convergence of complex Monge–Ampère measures\",\"authors\":\"Mohamed El Kadiri\",\"doi\":\"10.1016/j.indag.2023.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></math></span> be a decreasing sequence of psh functions in the domain of definition <span><math><mi>D</mi></math></span> of the Monge–Ampère operator on a domain <span><math><mi>Ω</mi></math></span> of <span><math><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> such that <span><math><mrow><mi>u</mi><mo>=</mo><msub><mrow><mo>inf</mo></mrow><mrow><mi>j</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></math></span> is plurisubharmonic on <span><math><mi>Ω</mi></math></span>. In this paper we are interested in the problem of finding conditions insuring that <span><span><span><math><mrow><munder><mrow><mo>lim</mo></mrow><mrow><mi>j</mi><mo>→</mo><mo>+</mo><mi>∞</mi></mrow></munder><mo>∫</mo><mi>φ</mi><msup><mrow><mrow><mo>(</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><mo>∫</mo><mi>φ</mi><mo>NP</mo><msup><mrow><mrow><mo>(</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><mi>u</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span></span></span>for any continuous function on <span><math><mi>Ω</mi></math></span> with compact support, where <span><math><mrow><mo>NP</mo><msup><mrow><mrow><mo>(</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><mi>u</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> is the nonpolar part of <span><math><msup><mrow><mrow><mo>(</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><mi>u</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></math></span>, and conditions implying that <span><math><mrow><mi>u</mi><mo>∈</mo><mi>D</mi></mrow></math></span>. For <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>=</mo><mo>max</mo><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mo>−</mo><mi>j</mi><mo>)</mo></mrow></mrow></math></span> these conditions imply also that <span><span><span><math><mrow><munder><mrow><mo>lim</mo></mrow><mrow><mi>j</mi><mo>→</mo><mo>+</mo><mi>∞</mi></mrow></munder><msub><mrow><mo>∫</mo></mrow><mrow><mi>K</mi></mrow></msub><msup><mrow><mrow><mo>(</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>K</mi></mrow></msub><mo>NP</mo><msup><mrow><mrow><mo>(</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><mi>u</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span></span></span>for any compact set <span><math><mrow><mi>K</mi><mo>⊂</mo><mrow><mo>{</mo><mi>u</mi><mo>></mo><mo>−</mo><mi>∞</mi><mo>}</mo></mrow></mrow></math></span>.</p></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"35 1\",\"pages\":\"Pages 28-36\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357723000708\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000708","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Remarks on weak convergence of complex Monge–Ampère measures
Let be a decreasing sequence of psh functions in the domain of definition of the Monge–Ampère operator on a domain of such that is plurisubharmonic on . In this paper we are interested in the problem of finding conditions insuring that for any continuous function on with compact support, where is the nonpolar part of , and conditions implying that . For these conditions imply also that for any compact set .
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.