轨道范畴的共上同调

Pub Date : 2019-05-14 DOI:10.1007/s40062-019-00235-2
David Blanc, Simona Paoli
{"title":"轨道范畴的共上同调","authors":"David Blanc,&nbsp;Simona Paoli","doi":"10.1007/s40062-019-00235-2","DOIUrl":null,"url":null,"abstract":"<p>We define a comonad cohomology of track categories, and show that it is related via a long exact sequence to the corresponding <span>\\(({\\mathcal {S}}\\!,\\!\\mathcal {O})\\)</span>-cohomology. Under mild hypotheses, the comonad cohomology coincides, up to reindexing, with the <span>\\(({\\mathcal {S}}\\!,\\!\\mathcal {O})\\)</span>-cohomology, yielding an algebraic description of the latter. We also specialize to the case where the track category is a 2-groupoid.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-019-00235-2","citationCount":"1","resultStr":"{\"title\":\"Comonad cohomology of track categories\",\"authors\":\"David Blanc,&nbsp;Simona Paoli\",\"doi\":\"10.1007/s40062-019-00235-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We define a comonad cohomology of track categories, and show that it is related via a long exact sequence to the corresponding <span>\\\\(({\\\\mathcal {S}}\\\\!,\\\\!\\\\mathcal {O})\\\\)</span>-cohomology. Under mild hypotheses, the comonad cohomology coincides, up to reindexing, with the <span>\\\\(({\\\\mathcal {S}}\\\\!,\\\\!\\\\mathcal {O})\\\\)</span>-cohomology, yielding an algebraic description of the latter. We also specialize to the case where the track category is a 2-groupoid.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-019-00235-2\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-019-00235-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-019-00235-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们定义了轨迹范畴的共上同调,并证明了它通过一个长精确序列与对应的\(({\mathcal {S}}\!,\!\mathcal {O})\) -上同调相关。在温和的假设下,共上同调与\(({\mathcal {S}}\!,\!\mathcal {O})\) -上同调重合,直至重合,产生了后者的代数描述。我们还专门研究轨道类别是2-groupoid的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comonad cohomology of track categories

分享
查看原文
Comonad cohomology of track categories

We define a comonad cohomology of track categories, and show that it is related via a long exact sequence to the corresponding \(({\mathcal {S}}\!,\!\mathcal {O})\)-cohomology. Under mild hypotheses, the comonad cohomology coincides, up to reindexing, with the \(({\mathcal {S}}\!,\!\mathcal {O})\)-cohomology, yielding an algebraic description of the latter. We also specialize to the case where the track category is a 2-groupoid.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信