轨道范畴的共上同调

IF 0.7 4区 数学 Q2 MATHEMATICS
David Blanc, Simona Paoli
{"title":"轨道范畴的共上同调","authors":"David Blanc,&nbsp;Simona Paoli","doi":"10.1007/s40062-019-00235-2","DOIUrl":null,"url":null,"abstract":"<p>We define a comonad cohomology of track categories, and show that it is related via a long exact sequence to the corresponding <span>\\(({\\mathcal {S}}\\!,\\!\\mathcal {O})\\)</span>-cohomology. Under mild hypotheses, the comonad cohomology coincides, up to reindexing, with the <span>\\(({\\mathcal {S}}\\!,\\!\\mathcal {O})\\)</span>-cohomology, yielding an algebraic description of the latter. We also specialize to the case where the track category is a 2-groupoid.</p>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"14 4","pages":"881 - 917"},"PeriodicalIF":0.7000,"publicationDate":"2019-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-019-00235-2","citationCount":"1","resultStr":"{\"title\":\"Comonad cohomology of track categories\",\"authors\":\"David Blanc,&nbsp;Simona Paoli\",\"doi\":\"10.1007/s40062-019-00235-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We define a comonad cohomology of track categories, and show that it is related via a long exact sequence to the corresponding <span>\\\\(({\\\\mathcal {S}}\\\\!,\\\\!\\\\mathcal {O})\\\\)</span>-cohomology. Under mild hypotheses, the comonad cohomology coincides, up to reindexing, with the <span>\\\\(({\\\\mathcal {S}}\\\\!,\\\\!\\\\mathcal {O})\\\\)</span>-cohomology, yielding an algebraic description of the latter. We also specialize to the case where the track category is a 2-groupoid.</p>\",\"PeriodicalId\":49034,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"14 4\",\"pages\":\"881 - 917\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-019-00235-2\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-019-00235-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-019-00235-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们定义了轨迹范畴的共上同调,并证明了它通过一个长精确序列与对应的\(({\mathcal {S}}\!,\!\mathcal {O})\) -上同调相关。在温和的假设下,共上同调与\(({\mathcal {S}}\!,\!\mathcal {O})\) -上同调重合,直至重合,产生了后者的代数描述。我们还专门研究轨道类别是2-groupoid的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comonad cohomology of track categories

Comonad cohomology of track categories

We define a comonad cohomology of track categories, and show that it is related via a long exact sequence to the corresponding \(({\mathcal {S}}\!,\!\mathcal {O})\)-cohomology. Under mild hypotheses, the comonad cohomology coincides, up to reindexing, with the \(({\mathcal {S}}\!,\!\mathcal {O})\)-cohomology, yielding an algebraic description of the latter. We also specialize to the case where the track category is a 2-groupoid.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
21
审稿时长
>12 weeks
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信