{"title":"Reshetnyak最大化定理的非测地线模拟","authors":"T. Toyoda","doi":"10.1515/agms-2022-0151","DOIUrl":null,"url":null,"abstract":"Abstract For any real number κ \\kappa and any integer n ≥ 4 n\\ge 4 , the Cycl n ( κ ) {{\\rm{Cycl}}}_{n}\\left(\\kappa ) condition introduced by Gromov (CAT(κ)-spaces: construction and concentration, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 280 (2001), (Geom. i Topol. 7), 100–140, 299–300) is a necessary condition for a metric space to admit an isometric embedding into a CAT ( κ ) {\\rm{CAT}}\\left(\\kappa ) space. For geodesic metric spaces, satisfying the Cycl 4 ( κ ) {{\\rm{Cycl}}}_{4}\\left(\\kappa ) condition is equivalent to being CAT ( κ ) {\\rm{CAT}}\\left(\\kappa ) . In this article, we prove an analogue of Reshetnyak’s majorization theorem for (possibly non-geodesic) metric spaces that satisfy the Cycl 4 ( κ ) {{\\rm{Cycl}}}_{4}\\left(\\kappa ) condition. It follows from our result that for general metric spaces, the Cycl 4 ( κ ) {{\\rm{Cycl}}}_{4}\\left(\\kappa ) condition implies the Cycl n ( κ ) {{\\rm{Cycl}}}_{n}\\left(\\kappa ) conditions for all integers n ≥ 5 n\\ge 5 .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A non-geodesic analogue of Reshetnyak’s majorization theorem\",\"authors\":\"T. Toyoda\",\"doi\":\"10.1515/agms-2022-0151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For any real number κ \\\\kappa and any integer n ≥ 4 n\\\\ge 4 , the Cycl n ( κ ) {{\\\\rm{Cycl}}}_{n}\\\\left(\\\\kappa ) condition introduced by Gromov (CAT(κ)-spaces: construction and concentration, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 280 (2001), (Geom. i Topol. 7), 100–140, 299–300) is a necessary condition for a metric space to admit an isometric embedding into a CAT ( κ ) {\\\\rm{CAT}}\\\\left(\\\\kappa ) space. For geodesic metric spaces, satisfying the Cycl 4 ( κ ) {{\\\\rm{Cycl}}}_{4}\\\\left(\\\\kappa ) condition is equivalent to being CAT ( κ ) {\\\\rm{CAT}}\\\\left(\\\\kappa ) . In this article, we prove an analogue of Reshetnyak’s majorization theorem for (possibly non-geodesic) metric spaces that satisfy the Cycl 4 ( κ ) {{\\\\rm{Cycl}}}_{4}\\\\left(\\\\kappa ) condition. It follows from our result that for general metric spaces, the Cycl 4 ( κ ) {{\\\\rm{Cycl}}}_{4}\\\\left(\\\\kappa ) condition implies the Cycl n ( κ ) {{\\\\rm{Cycl}}}_{n}\\\\left(\\\\kappa ) conditions for all integers n ≥ 5 n\\\\ge 5 .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2022-0151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2022-0151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
摘要
摘要:对于任意实数κ \kappa和任意整数n≥4 n \ge 4, Gromov (CAT(κ)-spaces: construction and concentration, Zap,引入Cycl n (κ) {{\rm{Cycl}}}_n{}\left (\kappa)条件。午餐。Sem。彼得堡。奥德尔。斯特克洛夫博士。(POMI) 280 (2001), (Geom)。i Topol. 7), 100-140, 299-300)是度量空间允许等距嵌入到CAT (κ) {\rm{CAT}}\left (\kappa)空间的必要条件。对于测地线度量空间,满足Cycl 4 (κ) {{\rm{Cycl}}}_4{}\left (\kappa)条件等价于CAT (κ) {\rm{CAT}}\left (\kappa)。本文证明了满足Cycl 4 (κ) {{\rm{Cycl}}}_4{}\left (\kappa)条件的(可能是非测地的)度量空间Reshetnyak最大化定理的一个类比。由我们的结果可知,对于一般度量空间,Cycl 4 (κ) {{\rm{Cycl}}}_4{}\left (\kappa)条件意味着对于所有整数n≥5 n {{\rm{Cycl}}}{}\ge 5, Cycl n (κ) _n\left (\kappa)条件。
A non-geodesic analogue of Reshetnyak’s majorization theorem
Abstract For any real number κ \kappa and any integer n ≥ 4 n\ge 4 , the Cycl n ( κ ) {{\rm{Cycl}}}_{n}\left(\kappa ) condition introduced by Gromov (CAT(κ)-spaces: construction and concentration, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 280 (2001), (Geom. i Topol. 7), 100–140, 299–300) is a necessary condition for a metric space to admit an isometric embedding into a CAT ( κ ) {\rm{CAT}}\left(\kappa ) space. For geodesic metric spaces, satisfying the Cycl 4 ( κ ) {{\rm{Cycl}}}_{4}\left(\kappa ) condition is equivalent to being CAT ( κ ) {\rm{CAT}}\left(\kappa ) . In this article, we prove an analogue of Reshetnyak’s majorization theorem for (possibly non-geodesic) metric spaces that satisfy the Cycl 4 ( κ ) {{\rm{Cycl}}}_{4}\left(\kappa ) condition. It follows from our result that for general metric spaces, the Cycl 4 ( κ ) {{\rm{Cycl}}}_{4}\left(\kappa ) condition implies the Cycl n ( κ ) {{\rm{Cycl}}}_{n}\left(\kappa ) conditions for all integers n ≥ 5 n\ge 5 .