{"title":"Reshetnyak最大化定理的非测地线模拟","authors":"T. Toyoda","doi":"10.1515/agms-2022-0151","DOIUrl":null,"url":null,"abstract":"Abstract For any real number κ \\kappa and any integer n ≥ 4 n\\ge 4 , the Cycl n ( κ ) {{\\rm{Cycl}}}_{n}\\left(\\kappa ) condition introduced by Gromov (CAT(κ)-spaces: construction and concentration, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 280 (2001), (Geom. i Topol. 7), 100–140, 299–300) is a necessary condition for a metric space to admit an isometric embedding into a CAT ( κ ) {\\rm{CAT}}\\left(\\kappa ) space. For geodesic metric spaces, satisfying the Cycl 4 ( κ ) {{\\rm{Cycl}}}_{4}\\left(\\kappa ) condition is equivalent to being CAT ( κ ) {\\rm{CAT}}\\left(\\kappa ) . In this article, we prove an analogue of Reshetnyak’s majorization theorem for (possibly non-geodesic) metric spaces that satisfy the Cycl 4 ( κ ) {{\\rm{Cycl}}}_{4}\\left(\\kappa ) condition. It follows from our result that for general metric spaces, the Cycl 4 ( κ ) {{\\rm{Cycl}}}_{4}\\left(\\kappa ) condition implies the Cycl n ( κ ) {{\\rm{Cycl}}}_{n}\\left(\\kappa ) conditions for all integers n ≥ 5 n\\ge 5 .","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"11 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A non-geodesic analogue of Reshetnyak’s majorization theorem\",\"authors\":\"T. Toyoda\",\"doi\":\"10.1515/agms-2022-0151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For any real number κ \\\\kappa and any integer n ≥ 4 n\\\\ge 4 , the Cycl n ( κ ) {{\\\\rm{Cycl}}}_{n}\\\\left(\\\\kappa ) condition introduced by Gromov (CAT(κ)-spaces: construction and concentration, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 280 (2001), (Geom. i Topol. 7), 100–140, 299–300) is a necessary condition for a metric space to admit an isometric embedding into a CAT ( κ ) {\\\\rm{CAT}}\\\\left(\\\\kappa ) space. For geodesic metric spaces, satisfying the Cycl 4 ( κ ) {{\\\\rm{Cycl}}}_{4}\\\\left(\\\\kappa ) condition is equivalent to being CAT ( κ ) {\\\\rm{CAT}}\\\\left(\\\\kappa ) . In this article, we prove an analogue of Reshetnyak’s majorization theorem for (possibly non-geodesic) metric spaces that satisfy the Cycl 4 ( κ ) {{\\\\rm{Cycl}}}_{4}\\\\left(\\\\kappa ) condition. It follows from our result that for general metric spaces, the Cycl 4 ( κ ) {{\\\\rm{Cycl}}}_{4}\\\\left(\\\\kappa ) condition implies the Cycl n ( κ ) {{\\\\rm{Cycl}}}_{n}\\\\left(\\\\kappa ) conditions for all integers n ≥ 5 n\\\\ge 5 .\",\"PeriodicalId\":48637,\"journal\":{\"name\":\"Analysis and Geometry in Metric Spaces\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Geometry in Metric Spaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2022-0151\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2022-0151","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
摘要
摘要:对于任意实数κ \kappa和任意整数n≥4 n \ge 4, Gromov (CAT(κ)-spaces: construction and concentration, Zap,引入Cycl n (κ) {{\rm{Cycl}}}_n{}\left (\kappa)条件。午餐。Sem。彼得堡。奥德尔。斯特克洛夫博士。(POMI) 280 (2001), (Geom)。i Topol. 7), 100-140, 299-300)是度量空间允许等距嵌入到CAT (κ) {\rm{CAT}}\left (\kappa)空间的必要条件。对于测地线度量空间,满足Cycl 4 (κ) {{\rm{Cycl}}}_4{}\left (\kappa)条件等价于CAT (κ) {\rm{CAT}}\left (\kappa)。本文证明了满足Cycl 4 (κ) {{\rm{Cycl}}}_4{}\left (\kappa)条件的(可能是非测地的)度量空间Reshetnyak最大化定理的一个类比。由我们的结果可知,对于一般度量空间,Cycl 4 (κ) {{\rm{Cycl}}}_4{}\left (\kappa)条件意味着对于所有整数n≥5 n {{\rm{Cycl}}}{}\ge 5, Cycl n (κ) _n\left (\kappa)条件。
A non-geodesic analogue of Reshetnyak’s majorization theorem
Abstract For any real number κ \kappa and any integer n ≥ 4 n\ge 4 , the Cycl n ( κ ) {{\rm{Cycl}}}_{n}\left(\kappa ) condition introduced by Gromov (CAT(κ)-spaces: construction and concentration, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 280 (2001), (Geom. i Topol. 7), 100–140, 299–300) is a necessary condition for a metric space to admit an isometric embedding into a CAT ( κ ) {\rm{CAT}}\left(\kappa ) space. For geodesic metric spaces, satisfying the Cycl 4 ( κ ) {{\rm{Cycl}}}_{4}\left(\kappa ) condition is equivalent to being CAT ( κ ) {\rm{CAT}}\left(\kappa ) . In this article, we prove an analogue of Reshetnyak’s majorization theorem for (possibly non-geodesic) metric spaces that satisfy the Cycl 4 ( κ ) {{\rm{Cycl}}}_{4}\left(\kappa ) condition. It follows from our result that for general metric spaces, the Cycl 4 ( κ ) {{\rm{Cycl}}}_{4}\left(\kappa ) condition implies the Cycl n ( κ ) {{\rm{Cycl}}}_{n}\left(\kappa ) conditions for all integers n ≥ 5 n\ge 5 .
期刊介绍:
Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed.
AGMS is devoted to the publication of results on these and related topics:
Geometric inequalities in metric spaces,
Geometric measure theory and variational problems in metric spaces,
Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density,
Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds.
Geometric control theory,
Curvature in metric and length spaces,
Geometric group theory,
Harmonic Analysis. Potential theory,
Mass transportation problems,
Quasiconformal and quasiregular mappings. Quasiconformal geometry,
PDEs associated to analytic and geometric problems in metric spaces.