Yijian Duan, Changbo Yang, Jihong Zhu, Yanmei Meng, Xin Liu
{"title":"基于改进人工势场的自动驾驶汽车主动避障方法","authors":"Yijian Duan, Changbo Yang, Jihong Zhu, Yanmei Meng, Xin Liu","doi":"10.1177/17298806221115984","DOIUrl":null,"url":null,"abstract":"Aiming at the local minimum point problem in an artificial potential field based on a safe distance model, this article proposes an algorithm for active obstacle avoidance path planning and tracking of autonomous vehicles using an improved artificial potential field. First, a possible road operating condition in which the artificial potential field based on the safety-distance model falls into a local minimum point is studied. Subsequently, an improved artificial potential field method is proposed by introducing the second virtual target attraction potential field, which successfully overcomes the local minimum point problem. Second, a model for autonomous vehicle active obstacle avoidance path planning and tracking based on the improved artificial potential field is established. Finally, MATLAB/CarSim co-simulations were performed under the road conditions of constant- and variable-velocity obstacle vehicles. The simulation results demonstrate that the improved artificial potential field method can effectively solve the local minimum point problem of the artificial potential field based on the safe distance model. Additionally, the safety and stability of autonomous vehicle active obstacle avoidance are improved.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Active obstacle avoidance method of autonomous vehicle based on improved artificial potential field\",\"authors\":\"Yijian Duan, Changbo Yang, Jihong Zhu, Yanmei Meng, Xin Liu\",\"doi\":\"10.1177/17298806221115984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the local minimum point problem in an artificial potential field based on a safe distance model, this article proposes an algorithm for active obstacle avoidance path planning and tracking of autonomous vehicles using an improved artificial potential field. First, a possible road operating condition in which the artificial potential field based on the safety-distance model falls into a local minimum point is studied. Subsequently, an improved artificial potential field method is proposed by introducing the second virtual target attraction potential field, which successfully overcomes the local minimum point problem. Second, a model for autonomous vehicle active obstacle avoidance path planning and tracking based on the improved artificial potential field is established. Finally, MATLAB/CarSim co-simulations were performed under the road conditions of constant- and variable-velocity obstacle vehicles. The simulation results demonstrate that the improved artificial potential field method can effectively solve the local minimum point problem of the artificial potential field based on the safe distance model. Additionally, the safety and stability of autonomous vehicle active obstacle avoidance are improved.\",\"PeriodicalId\":50343,\"journal\":{\"name\":\"International Journal of Advanced Robotic Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/17298806221115984\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806221115984","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Active obstacle avoidance method of autonomous vehicle based on improved artificial potential field
Aiming at the local minimum point problem in an artificial potential field based on a safe distance model, this article proposes an algorithm for active obstacle avoidance path planning and tracking of autonomous vehicles using an improved artificial potential field. First, a possible road operating condition in which the artificial potential field based on the safety-distance model falls into a local minimum point is studied. Subsequently, an improved artificial potential field method is proposed by introducing the second virtual target attraction potential field, which successfully overcomes the local minimum point problem. Second, a model for autonomous vehicle active obstacle avoidance path planning and tracking based on the improved artificial potential field is established. Finally, MATLAB/CarSim co-simulations were performed under the road conditions of constant- and variable-velocity obstacle vehicles. The simulation results demonstrate that the improved artificial potential field method can effectively solve the local minimum point problem of the artificial potential field based on the safe distance model. Additionally, the safety and stability of autonomous vehicle active obstacle avoidance are improved.
期刊介绍:
International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.