{"title":"评估生成对抗模型对异常入侵检测性能的影响","authors":"Mohammad Arafah, Iain Phillips, Asma Adnane","doi":"10.1049/ntw2.12098","DOIUrl":null,"url":null,"abstract":"<p>With the increasing rate and types of cyber attacks against information systems and communication infrastructures, many tools are needed to detect and mitigate against such attacks, for example, Intrusion Detection Systems (IDSs). Unfortunately, traditional Signature-based IDSs (SIDSs) perform poorly against previously unseen adversarial attacks. Anomaly-based IDSs (AIDSs) use <i>Machine Learning (ML)</i> and <i>Deep Learning (DL)</i> approaches to overcome these limitations. However, AIDS performance can be poor when trained on imbalanced datasets. To address the challenge of AIDS performance caused by these unbalanced training datasets, generative adversarial models are proposed to obtain adversarial attacks from one side and analyse their quality from another. According to extensive usage and reliability criteria for generative adversarial models in different disciplines, <i>Generative Adversarial Networks (GANs)</i>, <i>Bidirectional GAN (BiGAN)</i>, and <i>Wasserstein GAN (WGAN)</i> are employed to serve AIDS. The authors have extensively assessed their abilities and robustness to deliver high-quality attacks for AIDS. AIDSs are constructed, trained, and tuned based on these models to measure their impacts. The authors have employed two datasets: <i>NSL-KDD</i> and <i>CICIDS-2017</i> for generalisation purposes, where <i>ML</i> and <i>DL</i> approaches are utilised to implement AIDSs. Their results show that the <i>WGAN</i> model outperformed <i>GANs</i> and <i>BiGAN</i> models in binary and multiclass classifications for both datasets.</p>","PeriodicalId":46240,"journal":{"name":"IET Networks","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ntw2.12098","citationCount":"0","resultStr":"{\"title\":\"Evaluating the impact of generative adversarial models on the performance of anomaly intrusion detection\",\"authors\":\"Mohammad Arafah, Iain Phillips, Asma Adnane\",\"doi\":\"10.1049/ntw2.12098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the increasing rate and types of cyber attacks against information systems and communication infrastructures, many tools are needed to detect and mitigate against such attacks, for example, Intrusion Detection Systems (IDSs). Unfortunately, traditional Signature-based IDSs (SIDSs) perform poorly against previously unseen adversarial attacks. Anomaly-based IDSs (AIDSs) use <i>Machine Learning (ML)</i> and <i>Deep Learning (DL)</i> approaches to overcome these limitations. However, AIDS performance can be poor when trained on imbalanced datasets. To address the challenge of AIDS performance caused by these unbalanced training datasets, generative adversarial models are proposed to obtain adversarial attacks from one side and analyse their quality from another. According to extensive usage and reliability criteria for generative adversarial models in different disciplines, <i>Generative Adversarial Networks (GANs)</i>, <i>Bidirectional GAN (BiGAN)</i>, and <i>Wasserstein GAN (WGAN)</i> are employed to serve AIDS. The authors have extensively assessed their abilities and robustness to deliver high-quality attacks for AIDS. AIDSs are constructed, trained, and tuned based on these models to measure their impacts. The authors have employed two datasets: <i>NSL-KDD</i> and <i>CICIDS-2017</i> for generalisation purposes, where <i>ML</i> and <i>DL</i> approaches are utilised to implement AIDSs. Their results show that the <i>WGAN</i> model outperformed <i>GANs</i> and <i>BiGAN</i> models in binary and multiclass classifications for both datasets.</p>\",\"PeriodicalId\":46240,\"journal\":{\"name\":\"IET Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ntw2.12098\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ntw2.12098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Networks","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ntw2.12098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Evaluating the impact of generative adversarial models on the performance of anomaly intrusion detection
With the increasing rate and types of cyber attacks against information systems and communication infrastructures, many tools are needed to detect and mitigate against such attacks, for example, Intrusion Detection Systems (IDSs). Unfortunately, traditional Signature-based IDSs (SIDSs) perform poorly against previously unseen adversarial attacks. Anomaly-based IDSs (AIDSs) use Machine Learning (ML) and Deep Learning (DL) approaches to overcome these limitations. However, AIDS performance can be poor when trained on imbalanced datasets. To address the challenge of AIDS performance caused by these unbalanced training datasets, generative adversarial models are proposed to obtain adversarial attacks from one side and analyse their quality from another. According to extensive usage and reliability criteria for generative adversarial models in different disciplines, Generative Adversarial Networks (GANs), Bidirectional GAN (BiGAN), and Wasserstein GAN (WGAN) are employed to serve AIDS. The authors have extensively assessed their abilities and robustness to deliver high-quality attacks for AIDS. AIDSs are constructed, trained, and tuned based on these models to measure their impacts. The authors have employed two datasets: NSL-KDD and CICIDS-2017 for generalisation purposes, where ML and DL approaches are utilised to implement AIDSs. Their results show that the WGAN model outperformed GANs and BiGAN models in binary and multiclass classifications for both datasets.
IET NetworksCOMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
5.00
自引率
0.00%
发文量
41
审稿时长
33 weeks
期刊介绍:
IET Networks covers the fundamental developments and advancing methodologies to achieve higher performance, optimized and dependable future networks. IET Networks is particularly interested in new ideas and superior solutions to the known and arising technological development bottlenecks at all levels of networking such as topologies, protocols, routing, relaying and resource-allocation for more efficient and more reliable provision of network services. Topics include, but are not limited to: Network Architecture, Design and Planning, Network Protocol, Software, Analysis, Simulation and Experiment, Network Technologies, Applications and Services, Network Security, Operation and Management.