随机Navier-Stokes方程退出时间的指数不等式和一类演化

Q2 Mathematics
Po-Han Hsu, P. Sundar
{"title":"随机Navier-Stokes方程退出时间的指数不等式和一类演化","authors":"Po-Han Hsu, P. Sundar","doi":"10.31390/COSA.12.3.07","DOIUrl":null,"url":null,"abstract":"Exponential estimates for exit from a ball of radius r by time T for solutions of the two-dimensional stochastic Navier-Stokes equations are first derived, and then studied in the context of Freidlin-Wentzell type large deviations principle. The existence of a similar estimate is discussed for a suitable class of stochastic evolution equations with multiplicative noise.","PeriodicalId":53434,"journal":{"name":"Communications on Stochastic Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Exponential Inequalities for Exit Times for Stochastic Navier-Stokes Equations and a Class of Evolutions\",\"authors\":\"Po-Han Hsu, P. Sundar\",\"doi\":\"10.31390/COSA.12.3.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exponential estimates for exit from a ball of radius r by time T for solutions of the two-dimensional stochastic Navier-Stokes equations are first derived, and then studied in the context of Freidlin-Wentzell type large deviations principle. The existence of a similar estimate is discussed for a suitable class of stochastic evolution equations with multiplicative noise.\",\"PeriodicalId\":53434,\"journal\":{\"name\":\"Communications on Stochastic Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Stochastic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31390/COSA.12.3.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31390/COSA.12.3.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

摘要

首先导出了二维随机Navier-Stokes方程解的半径为r的球在时间T退出的指数估计,然后在Freidlin-Wentzell型大偏差原理的背景下进行了研究。讨论了一类具有乘性噪声的随机演化方程的相似估计的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential Inequalities for Exit Times for Stochastic Navier-Stokes Equations and a Class of Evolutions
Exponential estimates for exit from a ball of radius r by time T for solutions of the two-dimensional stochastic Navier-Stokes equations are first derived, and then studied in the context of Freidlin-Wentzell type large deviations principle. The existence of a similar estimate is discussed for a suitable class of stochastic evolution equations with multiplicative noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications on Stochastic Analysis
Communications on Stochastic Analysis Mathematics-Statistics and Probability
CiteScore
2.40
自引率
0.00%
发文量
0
期刊介绍: The journal Communications on Stochastic Analysis (COSA) is published in four issues annually (March, June, September, December). It aims to present original research papers of high quality in stochastic analysis (both theory and applications) and emphasizes the global development of the scientific community. The journal welcomes articles of interdisciplinary nature. Expository articles of current interest will occasionally be published. COSAis indexed in Mathematical Reviews (MathSciNet), Zentralblatt für Mathematik, and SCOPUS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信