马尔堡-猴痘病毒共感染传播的分式建模和数值模拟

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Nan Zhang, Emmanuel Addai, Lingling Zhang, M. Ngungu, E. Marinda, Joshua Kiddy K. Asamoah
{"title":"马尔堡-猴痘病毒共感染传播的分式建模和数值模拟","authors":"Nan Zhang, Emmanuel Addai, Lingling Zhang, M. Ngungu, E. Marinda, Joshua Kiddy K. Asamoah","doi":"10.1142/s0218348x2350086x","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate a deterministic mathematical model of Marburg–Monkeypox virus co-infection transmission under the Caputo fractional-order derivative. We discussed the dynamics behavior of the model and carried out qualitative and quantitative analysis, including the positivity–boundedness of solution, and the basic reproduction number [Formula: see text]. In addition, the Banach and Schauder-type fixed point theorem is utilized to explore the existence–uniqueness of the solution in the suggested model and the proposed model stability under the Ulam–Hyers condition is demonstrated. In numerical simulation, the Predictor–Corrector method is used to determine the numerical solutions. According to the numerical result, increasing the rate of quarantine and detecting unknown Marburg virus, will be the most effective control intervention to reduce Marburg and Monkeypox virus transmission in the population.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"FRACTIONAL MODELING AND NUMERICAL SIMULATION FOR UNFOLDING MARBURG–MONKEYPOX VIRUS CO-INFECTION TRANSMISSION\",\"authors\":\"Nan Zhang, Emmanuel Addai, Lingling Zhang, M. Ngungu, E. Marinda, Joshua Kiddy K. Asamoah\",\"doi\":\"10.1142/s0218348x2350086x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate a deterministic mathematical model of Marburg–Monkeypox virus co-infection transmission under the Caputo fractional-order derivative. We discussed the dynamics behavior of the model and carried out qualitative and quantitative analysis, including the positivity–boundedness of solution, and the basic reproduction number [Formula: see text]. In addition, the Banach and Schauder-type fixed point theorem is utilized to explore the existence–uniqueness of the solution in the suggested model and the proposed model stability under the Ulam–Hyers condition is demonstrated. In numerical simulation, the Predictor–Corrector method is used to determine the numerical solutions. According to the numerical result, increasing the rate of quarantine and detecting unknown Marburg virus, will be the most effective control intervention to reduce Marburg and Monkeypox virus transmission in the population.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x2350086x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218348x2350086x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们研究了一个在Caputo分数阶导数下的马尔堡-猴痘病毒共感染传播的确定性数学模型。我们讨论了模型的动力学行为,并进行了定性和定量分析,包括解的正-有界性和基本繁殖数[公式:见正文]。此外,利用Banach和Schauder型不动点定理来探索所提出模型中解的存在唯一性,并证明了所提出模型在Ulam–Hyers条件下的稳定性。在数值模拟中,使用预测-校正方法来确定数值解。根据数字结果,提高隔离率和检测未知马尔堡病毒,将是减少马尔堡和猴痘病毒在人群中传播的最有效控制干预措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FRACTIONAL MODELING AND NUMERICAL SIMULATION FOR UNFOLDING MARBURG–MONKEYPOX VIRUS CO-INFECTION TRANSMISSION
In this paper, we investigate a deterministic mathematical model of Marburg–Monkeypox virus co-infection transmission under the Caputo fractional-order derivative. We discussed the dynamics behavior of the model and carried out qualitative and quantitative analysis, including the positivity–boundedness of solution, and the basic reproduction number [Formula: see text]. In addition, the Banach and Schauder-type fixed point theorem is utilized to explore the existence–uniqueness of the solution in the suggested model and the proposed model stability under the Ulam–Hyers condition is demonstrated. In numerical simulation, the Predictor–Corrector method is used to determine the numerical solutions. According to the numerical result, increasing the rate of quarantine and detecting unknown Marburg virus, will be the most effective control intervention to reduce Marburg and Monkeypox virus transmission in the population.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信