{"title":"具有罕见事件的海量数据的分布式逻辑回归","authors":"Xia Li, Xuening Zhu, Hansheng Wang","doi":"10.5705/ss.202022.0242","DOIUrl":null,"url":null,"abstract":"Large-scale rare events data are commonly encountered in practice. To tackle the massive rare events data, we propose a novel distributed estimation method for logistic regression in a distributed system. For a distributed framework, we face the following two challenges. The first challenge is how to distribute the data. In this regard, two different distribution strategies (i.e., the RANDOM strategy and the COPY strategy) are investigated. The second challenge is how to select an appropriate type of objective function so that the best asymptotic efficiency can be achieved. Then, the under-sampled (US) and inverse probability weighted (IPW) types of objective functions are considered. Our results suggest that the COPY strategy together with the IPW objective function is the best solution for distributed logistic regression with rare events. The finite sample performance of the distributed methods is demonstrated by simulation studies and a real-world Sweden Traffic Sign dataset.","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Distributed Logistic Regression for Massive Data with Rare Events\",\"authors\":\"Xia Li, Xuening Zhu, Hansheng Wang\",\"doi\":\"10.5705/ss.202022.0242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large-scale rare events data are commonly encountered in practice. To tackle the massive rare events data, we propose a novel distributed estimation method for logistic regression in a distributed system. For a distributed framework, we face the following two challenges. The first challenge is how to distribute the data. In this regard, two different distribution strategies (i.e., the RANDOM strategy and the COPY strategy) are investigated. The second challenge is how to select an appropriate type of objective function so that the best asymptotic efficiency can be achieved. Then, the under-sampled (US) and inverse probability weighted (IPW) types of objective functions are considered. Our results suggest that the COPY strategy together with the IPW objective function is the best solution for distributed logistic regression with rare events. The finite sample performance of the distributed methods is demonstrated by simulation studies and a real-world Sweden Traffic Sign dataset.\",\"PeriodicalId\":49478,\"journal\":{\"name\":\"Statistica Sinica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Sinica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5705/ss.202022.0242\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Sinica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202022.0242","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Distributed Logistic Regression for Massive Data with Rare Events
Large-scale rare events data are commonly encountered in practice. To tackle the massive rare events data, we propose a novel distributed estimation method for logistic regression in a distributed system. For a distributed framework, we face the following two challenges. The first challenge is how to distribute the data. In this regard, two different distribution strategies (i.e., the RANDOM strategy and the COPY strategy) are investigated. The second challenge is how to select an appropriate type of objective function so that the best asymptotic efficiency can be achieved. Then, the under-sampled (US) and inverse probability weighted (IPW) types of objective functions are considered. Our results suggest that the COPY strategy together with the IPW objective function is the best solution for distributed logistic regression with rare events. The finite sample performance of the distributed methods is demonstrated by simulation studies and a real-world Sweden Traffic Sign dataset.
期刊介绍:
Statistica Sinica aims to meet the needs of statisticians in a rapidly changing world. It provides a forum for the publication of innovative work of high quality in all areas of statistics, including theory, methodology and applications. The journal encourages the development and principled use of statistical methodology that is relevant for society, science and technology.