Sultan Kıncal, Cansu Topkaya, Tolga Göktürk, Tuncer Hökelek, Ramazan Güp
{"title":"新型巴比妥酸酰腙衍生物的合成、晶体结构、Hirshfeld表面分析及相互作用能和能框架研究","authors":"Sultan Kıncal, Cansu Topkaya, Tolga Göktürk, Tuncer Hökelek, Ramazan Güp","doi":"10.1007/s10870-022-00945-1","DOIUrl":null,"url":null,"abstract":"<div><p>New hydrazone derivate, (1Z,2E)-2-(2-(1-(1,3-dimethyl-2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene)ethyl)hydrazineylidene)-2-(p-tolyl)acetaldehyde oxime (H<sub>2</sub>L) was synthesized by 5-acetyl-1,3-dimethyl-barbituric acid and p-methyl isonitrosophenylhydrazine. Its molecular and crystal structures were determined by single crystal X-ray analysis. It belongs to triclinic system <i>P</i>-1 space group with <i>a</i> = 7.1722 (3) Å, <i>b</i> = 10.5362 (4) Å, <i>c</i> = 11.7675 (5) Å, α = 98.844 (4)°, <i>β</i> = 98.882 (4)°, γ = 104.330 (4)°, <i>Z</i> = 2 and <i>V</i> = 833.95 (6) Å<sup>3</sup>. In the molecular structure, the intramolecular N–H···O and N–H···N hydrogen bonds enclose S(6) ring motifs. In the crystal structure, the intermolecular C–H···O and O–H···O hydrogen bonds link the molecules into centrosymmetric dimers, enclosing R<sub>2</sub><sup>2</sup>(10) and R<sub>4</sub><sup>4</sup>(10) ring motifs, in which they may be effective in stabilization of the structure. The Hirshfeld surface analysis of crystal structure indicates that the most important contributions for crystal packing are from H…H (48.5%), H…O/O…H (23.7%) and H…C/C…H (9.7%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in crystal packing. Computational chemistry indicates that in the crystal, O–H···O and C–H···O hydrogen bond energies are 95.9 and 87.5 kJ mol<sup>−1</sup>. The evaluation of the electrostatic, dispersion and total energy frameworks indicates that stabilization is dominated via the nearly equal strengths of the electrostatic and dispersion energy contributions.</p><h3>Graphical Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":615,"journal":{"name":"Journal of Chemical Crystallography","volume":"53 1","pages":"81 - 92"},"PeriodicalIF":0.4000,"publicationDate":"2022-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10870-022-00945-1.pdf","citationCount":"1","resultStr":"{\"title\":\"Synthesis, Crystal Structure, Hirshfeld Surface Analysis and Interaction Energy and Energy Framework Studies of Novel Hydrazone Derivative Containing Barbituric Acid Moiety\",\"authors\":\"Sultan Kıncal, Cansu Topkaya, Tolga Göktürk, Tuncer Hökelek, Ramazan Güp\",\"doi\":\"10.1007/s10870-022-00945-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>New hydrazone derivate, (1Z,2E)-2-(2-(1-(1,3-dimethyl-2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene)ethyl)hydrazineylidene)-2-(p-tolyl)acetaldehyde oxime (H<sub>2</sub>L) was synthesized by 5-acetyl-1,3-dimethyl-barbituric acid and p-methyl isonitrosophenylhydrazine. Its molecular and crystal structures were determined by single crystal X-ray analysis. It belongs to triclinic system <i>P</i>-1 space group with <i>a</i> = 7.1722 (3) Å, <i>b</i> = 10.5362 (4) Å, <i>c</i> = 11.7675 (5) Å, α = 98.844 (4)°, <i>β</i> = 98.882 (4)°, γ = 104.330 (4)°, <i>Z</i> = 2 and <i>V</i> = 833.95 (6) Å<sup>3</sup>. In the molecular structure, the intramolecular N–H···O and N–H···N hydrogen bonds enclose S(6) ring motifs. In the crystal structure, the intermolecular C–H···O and O–H···O hydrogen bonds link the molecules into centrosymmetric dimers, enclosing R<sub>2</sub><sup>2</sup>(10) and R<sub>4</sub><sup>4</sup>(10) ring motifs, in which they may be effective in stabilization of the structure. The Hirshfeld surface analysis of crystal structure indicates that the most important contributions for crystal packing are from H…H (48.5%), H…O/O…H (23.7%) and H…C/C…H (9.7%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in crystal packing. Computational chemistry indicates that in the crystal, O–H···O and C–H···O hydrogen bond energies are 95.9 and 87.5 kJ mol<sup>−1</sup>. The evaluation of the electrostatic, dispersion and total energy frameworks indicates that stabilization is dominated via the nearly equal strengths of the electrostatic and dispersion energy contributions.</p><h3>Graphical Abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":615,\"journal\":{\"name\":\"Journal of Chemical Crystallography\",\"volume\":\"53 1\",\"pages\":\"81 - 92\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10870-022-00945-1.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Crystallography\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10870-022-00945-1\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Crystallography","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10870-022-00945-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Synthesis, Crystal Structure, Hirshfeld Surface Analysis and Interaction Energy and Energy Framework Studies of Novel Hydrazone Derivative Containing Barbituric Acid Moiety
New hydrazone derivate, (1Z,2E)-2-(2-(1-(1,3-dimethyl-2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene)ethyl)hydrazineylidene)-2-(p-tolyl)acetaldehyde oxime (H2L) was synthesized by 5-acetyl-1,3-dimethyl-barbituric acid and p-methyl isonitrosophenylhydrazine. Its molecular and crystal structures were determined by single crystal X-ray analysis. It belongs to triclinic system P-1 space group with a = 7.1722 (3) Å, b = 10.5362 (4) Å, c = 11.7675 (5) Å, α = 98.844 (4)°, β = 98.882 (4)°, γ = 104.330 (4)°, Z = 2 and V = 833.95 (6) Å3. In the molecular structure, the intramolecular N–H···O and N–H···N hydrogen bonds enclose S(6) ring motifs. In the crystal structure, the intermolecular C–H···O and O–H···O hydrogen bonds link the molecules into centrosymmetric dimers, enclosing R22(10) and R44(10) ring motifs, in which they may be effective in stabilization of the structure. The Hirshfeld surface analysis of crystal structure indicates that the most important contributions for crystal packing are from H…H (48.5%), H…O/O…H (23.7%) and H…C/C…H (9.7%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in crystal packing. Computational chemistry indicates that in the crystal, O–H···O and C–H···O hydrogen bond energies are 95.9 and 87.5 kJ mol−1. The evaluation of the electrostatic, dispersion and total energy frameworks indicates that stabilization is dominated via the nearly equal strengths of the electrostatic and dispersion energy contributions.
期刊介绍:
Journal of Chemical Crystallography is an international and interdisciplinary publication dedicated to the rapid dissemination of research results in the general areas of crystallography and spectroscopy. Timely research reports detail topics in crystal chemistry and physics and their relation to problems of molecular structure; structural studies of solids, liquids, gases, and solutions involving spectroscopic, spectrometric, X-ray, and electron and neutron diffraction; and theoretical studies.