分数最优控制问题的一种新的最优同态渐近方法

IF 1.4 Q2 MATHEMATICS, APPLIED
O. Okundalaye, W. A. M. Othman
{"title":"分数最优控制问题的一种新的最优同态渐近方法","authors":"O. Okundalaye, W. A. M. Othman","doi":"10.1155/2021/6633130","DOIUrl":null,"url":null,"abstract":"Solving fractional optimal control problems (FOCPs) with an approximate analytical method has been widely studied by many authors, but to guarantee the convergence of the series solution has been a challenge. We solved this by integrating the Galerkin method of optimization technique into the whole region of the governing equations for accurate optimal values of control-convergence parameters . The arbitrary-order derivative is in the conformable fractional derivative sense. We use Euler–Lagrange equation form of necessary optimality conditions for FOCPs, and the arising fractional differential equations (FDEs) are solved by optimal homotopy asymptotic method (OHAM). The OHAM technique speedily provides the convergent approximate analytical solution as the arbitrary order derivative approaches 1. The convergence of the method is discussed, and its effectiveness is verified by some illustrative test examples.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":"2021 1","pages":"1-10"},"PeriodicalIF":1.4000,"publicationDate":"2021-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A New Optimal Homotopy Asymptotic Method for Fractional Optimal Control Problems\",\"authors\":\"O. Okundalaye, W. A. M. Othman\",\"doi\":\"10.1155/2021/6633130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solving fractional optimal control problems (FOCPs) with an approximate analytical method has been widely studied by many authors, but to guarantee the convergence of the series solution has been a challenge. We solved this by integrating the Galerkin method of optimization technique into the whole region of the governing equations for accurate optimal values of control-convergence parameters . The arbitrary-order derivative is in the conformable fractional derivative sense. We use Euler–Lagrange equation form of necessary optimality conditions for FOCPs, and the arising fractional differential equations (FDEs) are solved by optimal homotopy asymptotic method (OHAM). The OHAM technique speedily provides the convergent approximate analytical solution as the arbitrary order derivative approaches 1. The convergence of the method is discussed, and its effectiveness is verified by some illustrative test examples.\",\"PeriodicalId\":55967,\"journal\":{\"name\":\"International Journal of Differential Equations\",\"volume\":\"2021 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/6633130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/6633130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

用近似解析方法求解分数阶最优控制问题已经得到了许多学者的广泛研究,但如何保证级数解的收敛性一直是一个难题。我们通过将优化技术中的伽辽金方法集成到控制方程的整个区域中来求解控制收敛参数的精确最优值。任意阶导数是符合的分数阶导数。我们使用了FOCPs必要最优性条件的欧拉-拉格朗日方程形式,并利用最优同伦渐近方法求解了所产生的分数阶微分方程。当任意阶导数趋近于1时,OHAM技术快速地给出了收敛的近似解析解。讨论了该方法的收敛性,并通过实例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Optimal Homotopy Asymptotic Method for Fractional Optimal Control Problems
Solving fractional optimal control problems (FOCPs) with an approximate analytical method has been widely studied by many authors, but to guarantee the convergence of the series solution has been a challenge. We solved this by integrating the Galerkin method of optimization technique into the whole region of the governing equations for accurate optimal values of control-convergence parameters . The arbitrary-order derivative is in the conformable fractional derivative sense. We use Euler–Lagrange equation form of necessary optimality conditions for FOCPs, and the arising fractional differential equations (FDEs) are solved by optimal homotopy asymptotic method (OHAM). The OHAM technique speedily provides the convergent approximate analytical solution as the arbitrary order derivative approaches 1. The convergence of the method is discussed, and its effectiveness is verified by some illustrative test examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信