含1-二次谐波算子的拟线性方程非平凡解的存在性

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
Huo Tao, Lin Li, Xiao-Qiong Yang
{"title":"含1-二次谐波算子的拟线性方程非平凡解的存在性","authors":"Huo Tao, Lin Li, Xiao-Qiong Yang","doi":"10.3233/asy-221822","DOIUrl":null,"url":null,"abstract":"In this paper, we study the existence results of a quasilinear elliptic problem involving the 1-biharmonic operator in R N , whose nonlinearity satisfies appropriate conditions. The existence theorem is proved through a new version of the Mountain Pass Theorem to locally Lipschitz functionals, where it is considered the Cerami compactness condition rather than the Palais–Smale one.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of nontrivial solution for quasilinear equations involving the 1-biharmonic operator\",\"authors\":\"Huo Tao, Lin Li, Xiao-Qiong Yang\",\"doi\":\"10.3233/asy-221822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the existence results of a quasilinear elliptic problem involving the 1-biharmonic operator in R N , whose nonlinearity satisfies appropriate conditions. The existence theorem is proved through a new version of the Mountain Pass Theorem to locally Lipschitz functionals, where it is considered the Cerami compactness condition rather than the Palais–Smale one.\",\"PeriodicalId\":55438,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-221822\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-221822","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类非线性满足适当条件的含1-双调和算子的拟线性椭圆型问题的存在性。通过对局部Lipschitz泛函的新版山口定理证明了存在性定理,其中它被认为是Cerami紧致条件而不是Palais-Smale条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of nontrivial solution for quasilinear equations involving the 1-biharmonic operator
In this paper, we study the existence results of a quasilinear elliptic problem involving the 1-biharmonic operator in R N , whose nonlinearity satisfies appropriate conditions. The existence theorem is proved through a new version of the Mountain Pass Theorem to locally Lipschitz functionals, where it is considered the Cerami compactness condition rather than the Palais–Smale one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信