平面结构钙钛矿太阳能电池中SnO2层的紫外臭氧表面改性

IF 1.1 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
M. Z. Meymian, R. Keshtmand
{"title":"平面结构钙钛矿太阳能电池中SnO2层的紫外臭氧表面改性","authors":"M. Z. Meymian, R. Keshtmand","doi":"10.22068/IJMSE.2394","DOIUrl":null,"url":null,"abstract":"Tin oxide (SnO2) is used as an electron transport layer (ETL) in perovskite solar cells with a planar structure due to its good transparency and energy level alignment with the perovskite layer. The modification interface of the electron transport layer and the perovskite absorber layer plays an important role in the efficient charge extraction process at the interface. In this study, planar perovskite solar cells with configuration (FTO/SnO2/mixed-cation perovskite/CuInS2/Au) were prepared to investigate the effect of UV-Ozone (UVO) treated SnO2 as ETL on the performance of devices. ETL treatment was performed at different times (0 to 60 min). It is shown that surface wetting was improved by UVO treating the SnO2 films prior to deposition of the perovskite layer. The latter improves the contact between the ETL and the perovskite layer, allowing more efficient electron transport at the interface. Contact angle, SEM, photoluminescence spectra, and the current density-voltage tests were conducted to characterize the photovoltaic of the cells. The best PSC performance with a power conversion efficiency of 10.96% was achieved using UVO-treated SnO2 ETL for 30 min, whereas the power conversion efficiency of the perovskite solar cells with SnO2 ETL without UVO treatment was only 4.34%.","PeriodicalId":14603,"journal":{"name":"Iranian Journal of Materials Science and Engineering","volume":" ","pages":"1-9"},"PeriodicalIF":1.1000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Surface Modification of the SnO2 Layer Using UV-Ozone in a Perovskite Solar Cell with a Planar Structure\",\"authors\":\"M. Z. Meymian, R. Keshtmand\",\"doi\":\"10.22068/IJMSE.2394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tin oxide (SnO2) is used as an electron transport layer (ETL) in perovskite solar cells with a planar structure due to its good transparency and energy level alignment with the perovskite layer. The modification interface of the electron transport layer and the perovskite absorber layer plays an important role in the efficient charge extraction process at the interface. In this study, planar perovskite solar cells with configuration (FTO/SnO2/mixed-cation perovskite/CuInS2/Au) were prepared to investigate the effect of UV-Ozone (UVO) treated SnO2 as ETL on the performance of devices. ETL treatment was performed at different times (0 to 60 min). It is shown that surface wetting was improved by UVO treating the SnO2 films prior to deposition of the perovskite layer. The latter improves the contact between the ETL and the perovskite layer, allowing more efficient electron transport at the interface. Contact angle, SEM, photoluminescence spectra, and the current density-voltage tests were conducted to characterize the photovoltaic of the cells. The best PSC performance with a power conversion efficiency of 10.96% was achieved using UVO-treated SnO2 ETL for 30 min, whereas the power conversion efficiency of the perovskite solar cells with SnO2 ETL without UVO treatment was only 4.34%.\",\"PeriodicalId\":14603,\"journal\":{\"name\":\"Iranian Journal of Materials Science and Engineering\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Materials Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22068/IJMSE.2394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22068/IJMSE.2394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

氧化锡(SnO2)由于其良好的透明度和与钙钛矿层的能级对准而被用作具有平面结构的钙钛矿太阳能电池中的电子传输层(ETL)。电子传输层和钙钛矿吸收层的改性界面在界面处的有效电荷提取过程中起着重要作用。在本研究中,制备了具有配置(FTO/SnO2/混合阳离子钙钛矿/CuInS2/Au)的平面钙钛矿太阳能电池,以研究紫外线臭氧(UVO)处理的SnO2作为ETL对器件性能的影响。ETL处理在不同的时间(0至60分钟)进行。结果表明,在沉积钙钛矿层之前,通过UVO处理SnO2膜来改善表面润湿。后者改善了ETL和钙钛矿层之间的接触,允许在界面上更有效的电子传输。通过接触角、扫描电镜、光致发光光谱和电流密度-电压测试对电池的光伏特性进行了表征。使用UVO处理的SnO2 ETL 30分钟获得了功率转换效率为10.96%的最佳PSC性能,而使用SnO2 ETL而不使用UVO的钙钛矿太阳能电池的功率转换效率仅为4.34%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surface Modification of the SnO2 Layer Using UV-Ozone in a Perovskite Solar Cell with a Planar Structure
Tin oxide (SnO2) is used as an electron transport layer (ETL) in perovskite solar cells with a planar structure due to its good transparency and energy level alignment with the perovskite layer. The modification interface of the electron transport layer and the perovskite absorber layer plays an important role in the efficient charge extraction process at the interface. In this study, planar perovskite solar cells with configuration (FTO/SnO2/mixed-cation perovskite/CuInS2/Au) were prepared to investigate the effect of UV-Ozone (UVO) treated SnO2 as ETL on the performance of devices. ETL treatment was performed at different times (0 to 60 min). It is shown that surface wetting was improved by UVO treating the SnO2 films prior to deposition of the perovskite layer. The latter improves the contact between the ETL and the perovskite layer, allowing more efficient electron transport at the interface. Contact angle, SEM, photoluminescence spectra, and the current density-voltage tests were conducted to characterize the photovoltaic of the cells. The best PSC performance with a power conversion efficiency of 10.96% was achieved using UVO-treated SnO2 ETL for 30 min, whereas the power conversion efficiency of the perovskite solar cells with SnO2 ETL without UVO treatment was only 4.34%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iranian Journal of Materials Science and Engineering
Iranian Journal of Materials Science and Engineering MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.30
自引率
10.00%
发文量
0
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信