{"title":"双分布朗运动的Besov正则性","authors":"B. Boufoussi, Yassine Nachit","doi":"10.37190/0208-4147.41.2.6","DOIUrl":null,"url":null,"abstract":"Our aim in this paper is to improve Holder continuity results for the bifractional Brownian motion (bBm) $(B^{\\alpha,\\beta}(t))_{t\\in[0,1] }$ with $0 \\frac{1}{2}$ in the Holder spaces $\\mathcal{C}^{\\gamma}$, with $\\gamma<\\alpha \\beta$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the Besov regularity of the bifractional Brownian motion\",\"authors\":\"B. Boufoussi, Yassine Nachit\",\"doi\":\"10.37190/0208-4147.41.2.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our aim in this paper is to improve Holder continuity results for the bifractional Brownian motion (bBm) $(B^{\\\\alpha,\\\\beta}(t))_{t\\\\in[0,1] }$ with $0 \\\\frac{1}{2}$ in the Holder spaces $\\\\mathcal{C}^{\\\\gamma}$, with $\\\\gamma<\\\\alpha \\\\beta$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37190/0208-4147.41.2.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37190/0208-4147.41.2.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Besov regularity of the bifractional Brownian motion
Our aim in this paper is to improve Holder continuity results for the bifractional Brownian motion (bBm) $(B^{\alpha,\beta}(t))_{t\in[0,1] }$ with $0 \frac{1}{2}$ in the Holder spaces $\mathcal{C}^{\gamma}$, with $\gamma<\alpha \beta$.