限制性斐波那契词的统计

IF 0.6 Q3 MATHEMATICS
Omer Egecloglu
{"title":"限制性斐波那契词的统计","authors":"Omer Egecloglu","doi":"10.22108/TOC.2020.123414.1733","DOIUrl":null,"url":null,"abstract":"We study two foremost Mahonian statistics, the major index and the inversion number for a class of binary words called restricted Fibonacci words. The language of restricted Fibonacci words satisfies recurrences which allow for the calculation of the generating functions in two different ways. These yield identities involving the $q$-binomial coefficients and provide non-standard $q$-analogues of the Fibonacci numbers. The major index generating function for restricted Fibonacci words turns out to be a $q$-power multiple of the inversion generating function.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"10 1","pages":"31-42"},"PeriodicalIF":0.6000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Statistics on restricted Fibonacci words\",\"authors\":\"Omer Egecloglu\",\"doi\":\"10.22108/TOC.2020.123414.1733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study two foremost Mahonian statistics, the major index and the inversion number for a class of binary words called restricted Fibonacci words. The language of restricted Fibonacci words satisfies recurrences which allow for the calculation of the generating functions in two different ways. These yield identities involving the $q$-binomial coefficients and provide non-standard $q$-analogues of the Fibonacci numbers. The major index generating function for restricted Fibonacci words turns out to be a $q$-power multiple of the inversion generating function.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"10 1\",\"pages\":\"31-42\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2020.123414.1733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2020.123414.1733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们研究了两个最重要的Mahonian统计量,一类被称为限制性Fibonacci词的二进制词的主指数和反转数。限制斐波那契字的语言满足递归,允许以两种不同的方式计算生成函数。这些产生了涉及$q$二项式系数的恒等式,并提供了非标准的$q$斐波那契数的类似物。限制Fibonacci字的主要指数生成函数是反转生成函数的$q$幂倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistics on restricted Fibonacci words
We study two foremost Mahonian statistics, the major index and the inversion number for a class of binary words called restricted Fibonacci words. The language of restricted Fibonacci words satisfies recurrences which allow for the calculation of the generating functions in two different ways. These yield identities involving the $q$-binomial coefficients and provide non-standard $q$-analogues of the Fibonacci numbers. The major index generating function for restricted Fibonacci words turns out to be a $q$-power multiple of the inversion generating function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信