{"title":"超弹性Ricci流:梯度流、局部存在唯一性和Perelman能量泛函","authors":"M. Slemrod","doi":"10.1090/qam/1643","DOIUrl":null,"url":null,"abstract":"The equation of hyper-elastic Ricci flow amends classical Ricci flow by the addition of the Cauchy stress tensor which itself is derived from the a free energy. In this paper hyper-elastic Ricci flow is shown to possess three properties derived by G. Perelman for classical Ricci flow, specifically it is diffeomorphically equivalent to a gradient flow, unique smooth solutions exist locally in time, and the system possesses a non-decreasing energy function.","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyper-elastic Ricci flow: Gradient flow, local existence-uniqueness, and a Perelman energy functional\",\"authors\":\"M. Slemrod\",\"doi\":\"10.1090/qam/1643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The equation of hyper-elastic Ricci flow amends classical Ricci flow by the addition of the Cauchy stress tensor which itself is derived from the a free energy. In this paper hyper-elastic Ricci flow is shown to possess three properties derived by G. Perelman for classical Ricci flow, specifically it is diffeomorphically equivalent to a gradient flow, unique smooth solutions exist locally in time, and the system possesses a non-decreasing energy function.\",\"PeriodicalId\":20964,\"journal\":{\"name\":\"Quarterly of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/qam/1643\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/qam/1643","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Hyper-elastic Ricci flow: Gradient flow, local existence-uniqueness, and a Perelman energy functional
The equation of hyper-elastic Ricci flow amends classical Ricci flow by the addition of the Cauchy stress tensor which itself is derived from the a free energy. In this paper hyper-elastic Ricci flow is shown to possess three properties derived by G. Perelman for classical Ricci flow, specifically it is diffeomorphically equivalent to a gradient flow, unique smooth solutions exist locally in time, and the system possesses a non-decreasing energy function.
期刊介绍:
The Quarterly of Applied Mathematics contains original papers in applied mathematics which have a close connection with applications. An author index appears in the last issue of each volume.
This journal, published quarterly by Brown University with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.