超弹性Ricci流:梯度流、局部存在唯一性和Perelman能量泛函

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
M. Slemrod
{"title":"超弹性Ricci流:梯度流、局部存在唯一性和Perelman能量泛函","authors":"M. Slemrod","doi":"10.1090/qam/1643","DOIUrl":null,"url":null,"abstract":"The equation of hyper-elastic Ricci flow amends classical Ricci flow by the addition of the Cauchy stress tensor which itself is derived from the a free energy. In this paper hyper-elastic Ricci flow is shown to possess three properties derived by G. Perelman for classical Ricci flow, specifically it is diffeomorphically equivalent to a gradient flow, unique smooth solutions exist locally in time, and the system possesses a non-decreasing energy function.","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyper-elastic Ricci flow: Gradient flow, local existence-uniqueness, and a Perelman energy functional\",\"authors\":\"M. Slemrod\",\"doi\":\"10.1090/qam/1643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The equation of hyper-elastic Ricci flow amends classical Ricci flow by the addition of the Cauchy stress tensor which itself is derived from the a free energy. In this paper hyper-elastic Ricci flow is shown to possess three properties derived by G. Perelman for classical Ricci flow, specifically it is diffeomorphically equivalent to a gradient flow, unique smooth solutions exist locally in time, and the system possesses a non-decreasing energy function.\",\"PeriodicalId\":20964,\"journal\":{\"name\":\"Quarterly of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/qam/1643\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/qam/1643","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

超弹性Ricci流方程通过增加Cauchy应力张量来修正经典Ricci流,Cauchy张量本身是由自由能导出的。本文证明了超弹性Ricci流具有G.Perelman对经典Ricci流导出的三个性质,特别是它微分等价于梯度流,在时间上局部存在唯一的光滑解,系统具有不递减的能量函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyper-elastic Ricci flow: Gradient flow, local existence-uniqueness, and a Perelman energy functional
The equation of hyper-elastic Ricci flow amends classical Ricci flow by the addition of the Cauchy stress tensor which itself is derived from the a free energy. In this paper hyper-elastic Ricci flow is shown to possess three properties derived by G. Perelman for classical Ricci flow, specifically it is diffeomorphically equivalent to a gradient flow, unique smooth solutions exist locally in time, and the system possesses a non-decreasing energy function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quarterly of Applied Mathematics
Quarterly of Applied Mathematics 数学-应用数学
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Quarterly of Applied Mathematics contains original papers in applied mathematics which have a close connection with applications. An author index appears in the last issue of each volume. This journal, published quarterly by Brown University with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信