{"title":"硝化粉煤灰好氧处理高浓度废水硝化模型的构建","authors":"F. Liu, Xin Zhao, Yujin Pan, Xiaomin Hu","doi":"10.3846/jeelm.2022.18061","DOIUrl":null,"url":null,"abstract":"Nitrifying carriers can provide good settle ability and stable removal efficiency for nitrogen. Models for ammonia removal rate for nitrifying carriers will improve its engineering application. This study was conducted in nitrifying coal ash system with Monod model. Results indicated the maximum NH4+-N removal rate and half-saturation constant of NH4+-N in Monod model were 110.48 mg/L and 59.19 mg/L, respectively. Introduction of the correction coefficients, including pH, temperature and dissolved oxygen (DO) concentration, decreased the average gap between experiment data and simulated data from 6.48 to 2.74 mg N/(L·h). And improved accuracy of the Monod model by 5.11%. The differences between experiment and simulated NH4+-N removal rate ranged from 0.08 mg N/(L·h) to 8.34 mg N/(L·h) when the influent concentration of NH4+-N increased from 443.18 to 1121.29 mg N/L and without organic. Only 0.08% inconsistency between experiment and simulated data occurred in treating wastewater with high-strength ammonia. However, NH4+-N removal rate of the nitrifying coal ash was inhibited about 40% when influent with averaged 173.19 mg COD/L and 37.20 mg N/L, therefore, other factors, the content of nitrifying bacteria for example, need to be introduced into the Monod model when treating organic wastewater.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CONSTRUCTION OF NITRIFICATION MODEL WITH NITRIFYING COAL ASH IN AEROBIC TREATMENT OF HIGH STRENGTH WASTEWATER\",\"authors\":\"F. Liu, Xin Zhao, Yujin Pan, Xiaomin Hu\",\"doi\":\"10.3846/jeelm.2022.18061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nitrifying carriers can provide good settle ability and stable removal efficiency for nitrogen. Models for ammonia removal rate for nitrifying carriers will improve its engineering application. This study was conducted in nitrifying coal ash system with Monod model. Results indicated the maximum NH4+-N removal rate and half-saturation constant of NH4+-N in Monod model were 110.48 mg/L and 59.19 mg/L, respectively. Introduction of the correction coefficients, including pH, temperature and dissolved oxygen (DO) concentration, decreased the average gap between experiment data and simulated data from 6.48 to 2.74 mg N/(L·h). And improved accuracy of the Monod model by 5.11%. The differences between experiment and simulated NH4+-N removal rate ranged from 0.08 mg N/(L·h) to 8.34 mg N/(L·h) when the influent concentration of NH4+-N increased from 443.18 to 1121.29 mg N/L and without organic. Only 0.08% inconsistency between experiment and simulated data occurred in treating wastewater with high-strength ammonia. However, NH4+-N removal rate of the nitrifying coal ash was inhibited about 40% when influent with averaged 173.19 mg COD/L and 37.20 mg N/L, therefore, other factors, the content of nitrifying bacteria for example, need to be introduced into the Monod model when treating organic wastewater.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3846/jeelm.2022.18061\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3846/jeelm.2022.18061","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
CONSTRUCTION OF NITRIFICATION MODEL WITH NITRIFYING COAL ASH IN AEROBIC TREATMENT OF HIGH STRENGTH WASTEWATER
Nitrifying carriers can provide good settle ability and stable removal efficiency for nitrogen. Models for ammonia removal rate for nitrifying carriers will improve its engineering application. This study was conducted in nitrifying coal ash system with Monod model. Results indicated the maximum NH4+-N removal rate and half-saturation constant of NH4+-N in Monod model were 110.48 mg/L and 59.19 mg/L, respectively. Introduction of the correction coefficients, including pH, temperature and dissolved oxygen (DO) concentration, decreased the average gap between experiment data and simulated data from 6.48 to 2.74 mg N/(L·h). And improved accuracy of the Monod model by 5.11%. The differences between experiment and simulated NH4+-N removal rate ranged from 0.08 mg N/(L·h) to 8.34 mg N/(L·h) when the influent concentration of NH4+-N increased from 443.18 to 1121.29 mg N/L and without organic. Only 0.08% inconsistency between experiment and simulated data occurred in treating wastewater with high-strength ammonia. However, NH4+-N removal rate of the nitrifying coal ash was inhibited about 40% when influent with averaged 173.19 mg COD/L and 37.20 mg N/L, therefore, other factors, the content of nitrifying bacteria for example, need to be introduced into the Monod model when treating organic wastewater.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.