{"title":"随机旋转振动下基于随机共振的三稳定能量采集器性能改进","authors":"Tingting Zhang , Yanfei Jin , Yanxia Zhang","doi":"10.1016/j.taml.2022.100365","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the stochastic-resonance-based tri-stable energy harvester (TEH) is proposed to enhance harvesting performance under random rotational vibration. An electromechanical coupled system interfaced with a standard rectifier circuit driven by colored noise is considered. The stationary probability density function (SPDF) of the harvester is obtained by the improved stochastic averaging. Then, with the adiabatic approximation theory, the analytical expression of signal-to-noise ratio (SNR) for the TEH is deduced to characterize stochastic resonance (SR). To enhance direct current (DC) power delivery from a rotational TEH, the influences of system parameters on SR is discussed. The obtained results suggest that there are damping-induced resonance and noise-intensity-induced SR in the tri-stable system. The TEH has higher harvesting performance under the optimal SR. That is, the optimal parameter combinations can induce optimal SR and maximize harvesting performance. Thus, the stochastic-resonance-based TEH can be optimized to enhance energy harvesting through choosing the optimal parameter.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":"12 5","pages":"Article 100365"},"PeriodicalIF":3.2000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095034922000459/pdfft?md5=cd8380cf1d734d3b4a946026477b57f4&pid=1-s2.0-S2095034922000459-main.pdf","citationCount":"2","resultStr":"{\"title\":\"Performance improvement of the stochastic-resonance-based tri-stable energy harvester under random rotational vibration\",\"authors\":\"Tingting Zhang , Yanfei Jin , Yanxia Zhang\",\"doi\":\"10.1016/j.taml.2022.100365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the stochastic-resonance-based tri-stable energy harvester (TEH) is proposed to enhance harvesting performance under random rotational vibration. An electromechanical coupled system interfaced with a standard rectifier circuit driven by colored noise is considered. The stationary probability density function (SPDF) of the harvester is obtained by the improved stochastic averaging. Then, with the adiabatic approximation theory, the analytical expression of signal-to-noise ratio (SNR) for the TEH is deduced to characterize stochastic resonance (SR). To enhance direct current (DC) power delivery from a rotational TEH, the influences of system parameters on SR is discussed. The obtained results suggest that there are damping-induced resonance and noise-intensity-induced SR in the tri-stable system. The TEH has higher harvesting performance under the optimal SR. That is, the optimal parameter combinations can induce optimal SR and maximize harvesting performance. Thus, the stochastic-resonance-based TEH can be optimized to enhance energy harvesting through choosing the optimal parameter.</p></div>\",\"PeriodicalId\":46902,\"journal\":{\"name\":\"Theoretical and Applied Mechanics Letters\",\"volume\":\"12 5\",\"pages\":\"Article 100365\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095034922000459/pdfft?md5=cd8380cf1d734d3b4a946026477b57f4&pid=1-s2.0-S2095034922000459-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095034922000459\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095034922000459","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Performance improvement of the stochastic-resonance-based tri-stable energy harvester under random rotational vibration
In this paper, the stochastic-resonance-based tri-stable energy harvester (TEH) is proposed to enhance harvesting performance under random rotational vibration. An electromechanical coupled system interfaced with a standard rectifier circuit driven by colored noise is considered. The stationary probability density function (SPDF) of the harvester is obtained by the improved stochastic averaging. Then, with the adiabatic approximation theory, the analytical expression of signal-to-noise ratio (SNR) for the TEH is deduced to characterize stochastic resonance (SR). To enhance direct current (DC) power delivery from a rotational TEH, the influences of system parameters on SR is discussed. The obtained results suggest that there are damping-induced resonance and noise-intensity-induced SR in the tri-stable system. The TEH has higher harvesting performance under the optimal SR. That is, the optimal parameter combinations can induce optimal SR and maximize harvesting performance. Thus, the stochastic-resonance-based TEH can be optimized to enhance energy harvesting through choosing the optimal parameter.
期刊介绍:
An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).