曲面上的对合

Pub Date : 2019-05-14 DOI:10.1007/s40062-019-00236-1
Daniel Dugger
{"title":"曲面上的对合","authors":"Daniel Dugger","doi":"10.1007/s40062-019-00236-1","DOIUrl":null,"url":null,"abstract":"<p>We use equivariant surgery to classify all involutions on closed surfaces, up to isomorphism. Work on this problem is classical, dating back to the nineteenth century, with a complete classification finally appearing in the 1990s. In this paper we give a different approach to the classification, using techniques that are more accessible to algebraic topologists as well as a new invariant (which we call the double-Dickson invariant) for distinguishing the “hard” cases.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-019-00236-1","citationCount":"16","resultStr":"{\"title\":\"Involutions on surfaces\",\"authors\":\"Daniel Dugger\",\"doi\":\"10.1007/s40062-019-00236-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We use equivariant surgery to classify all involutions on closed surfaces, up to isomorphism. Work on this problem is classical, dating back to the nineteenth century, with a complete classification finally appearing in the 1990s. In this paper we give a different approach to the classification, using techniques that are more accessible to algebraic topologists as well as a new invariant (which we call the double-Dickson invariant) for distinguishing the “hard” cases.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-019-00236-1\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-019-00236-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-019-00236-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

我们用等变手术对闭合表面上的所有对合进行分类,直到同构。关于这个问题的研究是经典的,可以追溯到19世纪,直到20世纪90年代才出现了一个完整的分类。在本文中,我们给出了一种不同的分类方法,使用代数拓扑学家更容易理解的技术以及一个新的不变量(我们称之为double-Dickson不变量)来区分“困难”情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Involutions on surfaces

分享
查看原文
Involutions on surfaces

We use equivariant surgery to classify all involutions on closed surfaces, up to isomorphism. Work on this problem is classical, dating back to the nineteenth century, with a complete classification finally appearing in the 1990s. In this paper we give a different approach to the classification, using techniques that are more accessible to algebraic topologists as well as a new invariant (which we call the double-Dickson invariant) for distinguishing the “hard” cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信