迭代闵可夫斯基和,球和南北动力学

Pub Date : 2020-09-19 DOI:10.4171/ggd/670
Jeremias Epperlein, Tom Meyerovitch
{"title":"迭代闵可夫斯基和,球和南北动力学","authors":"Jeremias Epperlein, Tom Meyerovitch","doi":"10.4171/ggd/670","DOIUrl":null,"url":null,"abstract":"Given a finite generating set $A$ for a group $\\Gamma$, we study the map $W \\mapsto WA$ as a topological dynamical system -- a continuous self-map of the compact metrizable space of subsets of $\\Gamma$. If the set $A$ generates $\\Gamma$ as a semigroup and contains the identity, there are precisely two fixed points, one of which is attracting. This supports the initial impression that the dynamics of this map is rather trivial. Indeed, at least when $\\Gamma= \\mathbb{Z}^d$ and $A \\subseteq \\mathbb{Z}^d$ a finite positively generating set containing the natural invertible extension of the map $W \\mapsto W+A$ is always topologically conjugate to the unique \"north-south\" dynamics on the Cantor set. In contrast to this, we show that various natural \"geometric\" properties of the finitely generated group $(\\Gamma,A)$ can be recovered from the dynamics of this map, in particular, the growth type and amenability of $\\Gamma$. When $\\Gamma = \\mathbb{Z}^d$, we show that the volume of the convex hull of the generating set $A$ is also an invariant of topological conjugacy. Our study introduces, utilizes and develops a certain convexity structure on subsets of the group $\\Gamma$, related to a new concept which we call the sheltered hull of a set. We also relate this study to the structure of horoballs in finitely generated groups, focusing on the abelian case.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Iterated Minkowski sums, horoballs and north-south dynamics\",\"authors\":\"Jeremias Epperlein, Tom Meyerovitch\",\"doi\":\"10.4171/ggd/670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a finite generating set $A$ for a group $\\\\Gamma$, we study the map $W \\\\mapsto WA$ as a topological dynamical system -- a continuous self-map of the compact metrizable space of subsets of $\\\\Gamma$. If the set $A$ generates $\\\\Gamma$ as a semigroup and contains the identity, there are precisely two fixed points, one of which is attracting. This supports the initial impression that the dynamics of this map is rather trivial. Indeed, at least when $\\\\Gamma= \\\\mathbb{Z}^d$ and $A \\\\subseteq \\\\mathbb{Z}^d$ a finite positively generating set containing the natural invertible extension of the map $W \\\\mapsto W+A$ is always topologically conjugate to the unique \\\"north-south\\\" dynamics on the Cantor set. In contrast to this, we show that various natural \\\"geometric\\\" properties of the finitely generated group $(\\\\Gamma,A)$ can be recovered from the dynamics of this map, in particular, the growth type and amenability of $\\\\Gamma$. When $\\\\Gamma = \\\\mathbb{Z}^d$, we show that the volume of the convex hull of the generating set $A$ is also an invariant of topological conjugacy. Our study introduces, utilizes and develops a certain convexity structure on subsets of the group $\\\\Gamma$, related to a new concept which we call the sheltered hull of a set. We also relate this study to the structure of horoballs in finitely generated groups, focusing on the abelian case.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ggd/670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ggd/670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

给定群$\Gamma$的有限生成集$a$,我们将映射$W\mapsto-WA$研究为拓扑动力系统——$\Gamma子集的紧致可度量空间的连续自映射。如果集合$A$生成$\Gamma$作为半群并且包含恒等式,则恰好存在两个不动点,其中一个是吸引的。这支持了最初的印象,即该地图的动力学相当琐碎。事实上,至少当$\Gamma=\mathbb{Z}^d$和$A\substeq\mathbb{Z}^ d$时,包含映射$W\mapsto W+A$的自然可逆扩展的有限正生成集总是拓扑共轭于Cantor集上唯一的“南北”动力学。与此相反,我们证明了有限生成群$(\Gamma,A)$的各种自然“几何”性质可以从该映射的动力学中恢复,特别是$\Gamma$的增长类型和可修正性。当$\Gamma=\mathbb{Z}^d$时,我们证明了生成集$A$的凸包的体积也是拓扑共轭的不变量。我们的研究在群$\Gamma$的子集上引入、利用和发展了一个特定的凸性结构,这与我们称之为集合的遮蔽壳的一个新概念有关。我们还将这项研究与有限生成群中星座球的结构联系起来,重点关注阿贝尔情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Iterated Minkowski sums, horoballs and north-south dynamics
Given a finite generating set $A$ for a group $\Gamma$, we study the map $W \mapsto WA$ as a topological dynamical system -- a continuous self-map of the compact metrizable space of subsets of $\Gamma$. If the set $A$ generates $\Gamma$ as a semigroup and contains the identity, there are precisely two fixed points, one of which is attracting. This supports the initial impression that the dynamics of this map is rather trivial. Indeed, at least when $\Gamma= \mathbb{Z}^d$ and $A \subseteq \mathbb{Z}^d$ a finite positively generating set containing the natural invertible extension of the map $W \mapsto W+A$ is always topologically conjugate to the unique "north-south" dynamics on the Cantor set. In contrast to this, we show that various natural "geometric" properties of the finitely generated group $(\Gamma,A)$ can be recovered from the dynamics of this map, in particular, the growth type and amenability of $\Gamma$. When $\Gamma = \mathbb{Z}^d$, we show that the volume of the convex hull of the generating set $A$ is also an invariant of topological conjugacy. Our study introduces, utilizes and develops a certain convexity structure on subsets of the group $\Gamma$, related to a new concept which we call the sheltered hull of a set. We also relate this study to the structure of horoballs in finitely generated groups, focusing on the abelian case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信