{"title":"极值体积的Bier球与广义置换面体","authors":"Filip D. Jevti'c, Rade T. vZivaljevi'c","doi":"10.2298/aadm211010026j","DOIUrl":null,"url":null,"abstract":"We study hidden geometry of Bier spheres Bier(K) = K * ? K? by describing\n their natural geometric realizations, compute their volume, describe an\n effective criterion for their polytopality, and associate to Bier(K) a\n natural coarsening Fan(K) of the Braid fan. We also establish a connection\n of Bier spheres of maximal volume with recent generalizations of the\n classical Van Kampen-Flores theorem and clarify the role of Bier spheres in\n the theory of generalized permutohedra.","PeriodicalId":51232,"journal":{"name":"Applicable Analysis and Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bier spheres of extremal volume and generalized permutohedra\",\"authors\":\"Filip D. Jevti'c, Rade T. vZivaljevi'c\",\"doi\":\"10.2298/aadm211010026j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study hidden geometry of Bier spheres Bier(K) = K * ? K? by describing\\n their natural geometric realizations, compute their volume, describe an\\n effective criterion for their polytopality, and associate to Bier(K) a\\n natural coarsening Fan(K) of the Braid fan. We also establish a connection\\n of Bier spheres of maximal volume with recent generalizations of the\\n classical Van Kampen-Flores theorem and clarify the role of Bier spheres in\\n the theory of generalized permutohedra.\",\"PeriodicalId\":51232,\"journal\":{\"name\":\"Applicable Analysis and Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicable Analysis and Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/aadm211010026j\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Analysis and Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/aadm211010026j","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
摘要
我们研究了Bier球的隐几何Bier(K) = K * ?K ?通过描述它们的自然几何实现,计算它们的体积,描述它们的多面性的有效准则,并将Bier(K)与Braid扇的自然粗化扇(K)联系起来。我们还建立了最大体积Bier球与经典Van Kampen-Flores定理的最新推广之间的联系,并阐明了Bier球在广义复面体理论中的作用。
Bier spheres of extremal volume and generalized permutohedra
We study hidden geometry of Bier spheres Bier(K) = K * ? K? by describing
their natural geometric realizations, compute their volume, describe an
effective criterion for their polytopality, and associate to Bier(K) a
natural coarsening Fan(K) of the Braid fan. We also establish a connection
of Bier spheres of maximal volume with recent generalizations of the
classical Van Kampen-Flores theorem and clarify the role of Bier spheres in
the theory of generalized permutohedra.
期刊介绍:
Applicable Analysis and Discrete Mathematics is indexed, abstracted and cover-to cover reviewed in: Web of Science, Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), Mathematical Reviews/MathSciNet, Zentralblatt für Mathematik, Referativny Zhurnal-VINITI. It is included Citation Index-Expanded (SCIE), ISI Alerting Service and in Digital Mathematical Registry of American Mathematical Society (http://www.ams.org/dmr/).