S. Sofiyatun, C. Anam, Ummu Mar'atu Zahro, D. A. Rukmana, G. Dougherty
{"title":"计算机断层扫描图像切片厚度的自动测量","authors":"S. Sofiyatun, C. Anam, Ummu Mar'atu Zahro, D. A. Rukmana, G. Dougherty","doi":"10.17146/aij.2021.1111","DOIUrl":null,"url":null,"abstract":"Measurement of the slice thickness in computed tomography (CT) is usually made using a special phantom, such as the AAPM CT performance phantom. Images of the phantom are analyzed manually and subjectively. The purpose of this study is to develop an automated system for measuring the slice thickness of the CT image of the phantom using MATLAB software. The CT AAPM performance phantom was scanned by a 128 multi-slice computed tomography scanner (Revolution Evo, GE Healthcare, Waukesha, WI) at a slice thickness of 5 mm with four different phantom orientations and also scanned by a 6 multi-slice CT scanner (Somatom Emotion 6, Siemens AG, Forchheim, Germany) for two slice thicknesses of 5 and 10 mm. Our automat ed method produce d an accurate slice thickness value less than 0.5 mm different from the nominal slice thicknesses and manual measurements. Similar results were obtained when the phantom was rotated. This system is more objective and effective compared to manual systems.","PeriodicalId":8647,"journal":{"name":"Atom Indonesia","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An Automated Measurement of Image Slice Thickness of Computed Tomography\",\"authors\":\"S. Sofiyatun, C. Anam, Ummu Mar'atu Zahro, D. A. Rukmana, G. Dougherty\",\"doi\":\"10.17146/aij.2021.1111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Measurement of the slice thickness in computed tomography (CT) is usually made using a special phantom, such as the AAPM CT performance phantom. Images of the phantom are analyzed manually and subjectively. The purpose of this study is to develop an automated system for measuring the slice thickness of the CT image of the phantom using MATLAB software. The CT AAPM performance phantom was scanned by a 128 multi-slice computed tomography scanner (Revolution Evo, GE Healthcare, Waukesha, WI) at a slice thickness of 5 mm with four different phantom orientations and also scanned by a 6 multi-slice CT scanner (Somatom Emotion 6, Siemens AG, Forchheim, Germany) for two slice thicknesses of 5 and 10 mm. Our automat ed method produce d an accurate slice thickness value less than 0.5 mm different from the nominal slice thicknesses and manual measurements. Similar results were obtained when the phantom was rotated. This system is more objective and effective compared to manual systems.\",\"PeriodicalId\":8647,\"journal\":{\"name\":\"Atom Indonesia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atom Indonesia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17146/aij.2021.1111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atom Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17146/aij.2021.1111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
An Automated Measurement of Image Slice Thickness of Computed Tomography
Measurement of the slice thickness in computed tomography (CT) is usually made using a special phantom, such as the AAPM CT performance phantom. Images of the phantom are analyzed manually and subjectively. The purpose of this study is to develop an automated system for measuring the slice thickness of the CT image of the phantom using MATLAB software. The CT AAPM performance phantom was scanned by a 128 multi-slice computed tomography scanner (Revolution Evo, GE Healthcare, Waukesha, WI) at a slice thickness of 5 mm with four different phantom orientations and also scanned by a 6 multi-slice CT scanner (Somatom Emotion 6, Siemens AG, Forchheim, Germany) for two slice thicknesses of 5 and 10 mm. Our automat ed method produce d an accurate slice thickness value less than 0.5 mm different from the nominal slice thicknesses and manual measurements. Similar results were obtained when the phantom was rotated. This system is more objective and effective compared to manual systems.
期刊介绍:
The focus of Atom Indonesia is research and development in nuclear science and technology. The scope of this journal covers experimental and analytical research in nuclear science and technology. The topics include nuclear physics, reactor physics, radioactive waste, fuel element, radioisotopes, radiopharmacy, radiation, and neutron scattering, as well as their utilization in agriculture, industry, health, environment, energy, material science and technology, and related fields.