{"title":"二元多面体群中的Fibonacci循环序列","authors":"Ö. Deveci, E. Karaduman","doi":"10.22108/IJGT.2020.120894.1593","DOIUrl":null,"url":null,"abstract":"Deveci et al. defined 6. the Fibonacci-circulant sequences of the first and second kinds as shown, respectively: x_{n}¹=-x_{n-1}¹+x_{n-2}¹-x_{n-3}¹ for n≥4, where x₁¹=x₂¹=0 and x₃¹=1and x_{n}²=-x_{n-3}²-x_{n-4}²+x_{n-5}² for n≥6, where x₁²=x₂²=x₃²=x₄²=0 and x₅²=1.Also, they extended the Fibonacci-circulant sequences of the first and second kinds to groups. In this work, we obtain the periods of the Fibonacci-circulant sequences of the first and second kinds in the binary polyhedral groups.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2020-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Fibonacci-Circulant Sequences in the Binary Polyhedral Groups\",\"authors\":\"Ö. Deveci, E. Karaduman\",\"doi\":\"10.22108/IJGT.2020.120894.1593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deveci et al. defined 6. the Fibonacci-circulant sequences of the first and second kinds as shown, respectively: x_{n}¹=-x_{n-1}¹+x_{n-2}¹-x_{n-3}¹ for n≥4, where x₁¹=x₂¹=0 and x₃¹=1and x_{n}²=-x_{n-3}²-x_{n-4}²+x_{n-5}² for n≥6, where x₁²=x₂²=x₃²=x₄²=0 and x₅²=1.Also, they extended the Fibonacci-circulant sequences of the first and second kinds to groups. In this work, we obtain the periods of the Fibonacci-circulant sequences of the first and second kinds in the binary polyhedral groups.\",\"PeriodicalId\":43007,\"journal\":{\"name\":\"International Journal of Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/IJGT.2020.120894.1593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2020.120894.1593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Fibonacci-Circulant Sequences in the Binary Polyhedral Groups
Deveci et al. defined 6. the Fibonacci-circulant sequences of the first and second kinds as shown, respectively: x_{n}¹=-x_{n-1}¹+x_{n-2}¹-x_{n-3}¹ for n≥4, where x₁¹=x₂¹=0 and x₃¹=1and x_{n}²=-x_{n-3}²-x_{n-4}²+x_{n-5}² for n≥6, where x₁²=x₂²=x₃²=x₄²=0 and x₅²=1.Also, they extended the Fibonacci-circulant sequences of the first and second kinds to groups. In this work, we obtain the periods of the Fibonacci-circulant sequences of the first and second kinds in the binary polyhedral groups.
期刊介绍:
International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.