二元多面体群中的Fibonacci循环序列

IF 0.7 Q2 MATHEMATICS
Ö. Deveci, E. Karaduman
{"title":"二元多面体群中的Fibonacci循环序列","authors":"Ö. Deveci, E. Karaduman","doi":"10.22108/IJGT.2020.120894.1593","DOIUrl":null,"url":null,"abstract":"Deveci et al. defined 6. the Fibonacci-circulant sequences of the first and second kinds as shown, respectively: x_{n}¹=-x_{n-1}¹+x_{n-2}¹-x_{n-3}¹ for n≥4, where x₁¹=x₂¹=0 and x₃¹=1and x_{n}²=-x_{n-3}²-x_{n-4}²+x_{n-5}² for n≥6, where x₁²=x₂²=x₃²=x₄²=0 and x₅²=1.Also, they extended the Fibonacci-circulant sequences of the first and second kinds to groups. In this work, we obtain the periods of the Fibonacci-circulant sequences of the first and second kinds in the binary polyhedral groups.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2020-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Fibonacci-Circulant Sequences in the Binary Polyhedral Groups\",\"authors\":\"Ö. Deveci, E. Karaduman\",\"doi\":\"10.22108/IJGT.2020.120894.1593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deveci et al. defined 6. the Fibonacci-circulant sequences of the first and second kinds as shown, respectively: x_{n}¹=-x_{n-1}¹+x_{n-2}¹-x_{n-3}¹ for n≥4, where x₁¹=x₂¹=0 and x₃¹=1and x_{n}²=-x_{n-3}²-x_{n-4}²+x_{n-5}² for n≥6, where x₁²=x₂²=x₃²=x₄²=0 and x₅²=1.Also, they extended the Fibonacci-circulant sequences of the first and second kinds to groups. In this work, we obtain the periods of the Fibonacci-circulant sequences of the first and second kinds in the binary polyhedral groups.\",\"PeriodicalId\":43007,\"journal\":{\"name\":\"International Journal of Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/IJGT.2020.120894.1593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2020.120894.1593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Deveci等人定义6。第一类和第二类Fibonacci循环序列,分别如图所示:对于n≥4,x_{n}cco=-x{n-1}₁cco=x₂cco=0和x₃当n≥6时,1和x_{n}²=-x{n-3}²-x_{n-4}²+x_{n-5}²,其中x₁²=x₂²=x₃²=x₄²=0和x₅²=1。此外,他们将第一类和第二类的斐波那契循环序列扩展到群。在这项工作中,我们得到了二元多面体群中第一类和第二类Fibonacci循环序列的周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Fibonacci-Circulant Sequences in the Binary Polyhedral Groups
Deveci et al. defined 6. the Fibonacci-circulant sequences of the first and second kinds as shown, respectively: x_{n}¹=-x_{n-1}¹+x_{n-2}¹-x_{n-3}¹ for n≥4, where x₁¹=x₂¹=0 and x₃¹=1and x_{n}²=-x_{n-3}²-x_{n-4}²+x_{n-5}² for n≥6, where x₁²=x₂²=x₃²=x₄²=0 and x₅²=1.Also, they extended the Fibonacci-circulant sequences of the first and second kinds to groups. In this work, we obtain the periods of the Fibonacci-circulant sequences of the first and second kinds in the binary polyhedral groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
1
审稿时长
30 weeks
期刊介绍: International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信