加权图中的强共谱性和双顶点

Pub Date : 2021-11-01 DOI:10.13001/ela.2022.6721
Hermie Monterde
{"title":"加权图中的强共谱性和双顶点","authors":"Hermie Monterde","doi":"10.13001/ela.2022.6721","DOIUrl":null,"url":null,"abstract":"We explore algebraic and spectral properties of weighted graphs containing twin vertices that are useful in quantum state transfer. We extend the notion of adjacency strong cospectrality to Hermitian matrices, with focus on the generalized adjacency matrix and the generalized normalized adjacency matrix. We then determine necessary and sufficient conditions such that a pair of twin vertices in a weighted graph exhibits strong cospectrality with respect to the above-mentioned matrices. We also determine when strong cospectrality is preserved under Cartesian and direct products of graphs. Moreover, we generalize known results about equitable and almost equitable partitions and use these to determine which joins of the form $X\\vee H$, where $X$ is either the complete or empty graph, exhibit strong cospectrality.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Strong cospectrality and twin vertices in weighted graphs\",\"authors\":\"Hermie Monterde\",\"doi\":\"10.13001/ela.2022.6721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore algebraic and spectral properties of weighted graphs containing twin vertices that are useful in quantum state transfer. We extend the notion of adjacency strong cospectrality to Hermitian matrices, with focus on the generalized adjacency matrix and the generalized normalized adjacency matrix. We then determine necessary and sufficient conditions such that a pair of twin vertices in a weighted graph exhibits strong cospectrality with respect to the above-mentioned matrices. We also determine when strong cospectrality is preserved under Cartesian and direct products of graphs. Moreover, we generalize known results about equitable and almost equitable partitions and use these to determine which joins of the form $X\\\\vee H$, where $X$ is either the complete or empty graph, exhibit strong cospectrality.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2022.6721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.6721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们探索了包含双顶点的加权图的代数和谱性质,这些性质在量子态转移中很有用。我们将邻接强共谱的概念推广到Hermitian矩阵,重点讨论了广义邻接矩阵和广义归一化邻接矩阵。然后,我们确定了使加权图中的一对孪顶点相对于上述矩阵表现出强共谱性的充要条件。我们还确定在图的笛卡尔积和直积下何时保持强共谱性。此外,我们推广了关于公平和几乎公平划分的已知结果,并使用这些结果来确定形式为$X\vee H$的哪些连接,其中$X$是完整图或空图,表现出强共谱性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Strong cospectrality and twin vertices in weighted graphs
We explore algebraic and spectral properties of weighted graphs containing twin vertices that are useful in quantum state transfer. We extend the notion of adjacency strong cospectrality to Hermitian matrices, with focus on the generalized adjacency matrix and the generalized normalized adjacency matrix. We then determine necessary and sufficient conditions such that a pair of twin vertices in a weighted graph exhibits strong cospectrality with respect to the above-mentioned matrices. We also determine when strong cospectrality is preserved under Cartesian and direct products of graphs. Moreover, we generalize known results about equitable and almost equitable partitions and use these to determine which joins of the form $X\vee H$, where $X$ is either the complete or empty graph, exhibit strong cospectrality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信