{"title":"交叉铺层对碳纤维网格夹层结构仿生假足储能和振动特性影响的研究","authors":"Meijiao Jiang, Junxia Zhang","doi":"10.1515/secm-2022-0206","DOIUrl":null,"url":null,"abstract":"Abstract Made a pioneering attempt to use the lattice sandwich structure in prosthetic foot design and pioneered the study for the lay-up design of the prosthetic foot. An innovative carbon fiber bionic prosthetic foot was designed using a sandwich structure. The effect of cross-ply on the prosthetic foot’s energy storage properties and vibration characteristics was investigated using the lattice sandwich structure prosthetic foot. The bionic prosthetic foot’s finite element model was constructed under normal working conditions according to international standards. The results indicate that the storage of strain energy increases with an increase in cross-ply under heel-strict working conditions. Under the toe-off condition, the strain energy distribution increases with the increase in cross-ply. The cross-ply number influences the mode of displacement of the bionic foot. The natural frequencies of the bionic foot increase with the increase in the cross-ply.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An investigation into the effect of cross-ply on energy storage and vibration characteristics of carbon fiber lattice sandwich structure bionic prosthetic foot\",\"authors\":\"Meijiao Jiang, Junxia Zhang\",\"doi\":\"10.1515/secm-2022-0206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Made a pioneering attempt to use the lattice sandwich structure in prosthetic foot design and pioneered the study for the lay-up design of the prosthetic foot. An innovative carbon fiber bionic prosthetic foot was designed using a sandwich structure. The effect of cross-ply on the prosthetic foot’s energy storage properties and vibration characteristics was investigated using the lattice sandwich structure prosthetic foot. The bionic prosthetic foot’s finite element model was constructed under normal working conditions according to international standards. The results indicate that the storage of strain energy increases with an increase in cross-ply under heel-strict working conditions. Under the toe-off condition, the strain energy distribution increases with the increase in cross-ply. The cross-ply number influences the mode of displacement of the bionic foot. The natural frequencies of the bionic foot increase with the increase in the cross-ply.\",\"PeriodicalId\":21480,\"journal\":{\"name\":\"Science and Engineering of Composite Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Engineering of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/secm-2022-0206\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Engineering of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/secm-2022-0206","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
An investigation into the effect of cross-ply on energy storage and vibration characteristics of carbon fiber lattice sandwich structure bionic prosthetic foot
Abstract Made a pioneering attempt to use the lattice sandwich structure in prosthetic foot design and pioneered the study for the lay-up design of the prosthetic foot. An innovative carbon fiber bionic prosthetic foot was designed using a sandwich structure. The effect of cross-ply on the prosthetic foot’s energy storage properties and vibration characteristics was investigated using the lattice sandwich structure prosthetic foot. The bionic prosthetic foot’s finite element model was constructed under normal working conditions according to international standards. The results indicate that the storage of strain energy increases with an increase in cross-ply under heel-strict working conditions. Under the toe-off condition, the strain energy distribution increases with the increase in cross-ply. The cross-ply number influences the mode of displacement of the bionic foot. The natural frequencies of the bionic foot increase with the increase in the cross-ply.
期刊介绍:
Science and Engineering of Composite Materials is a quarterly publication which provides a forum for discussion of all aspects related to the structure and performance under simulated and actual service conditions of composites. The publication covers a variety of subjects, such as macro and micro and nano structure of materials, their mechanics and nanomechanics, the interphase, physical and chemical aging, fatigue, environmental interactions, and process modeling. The interdisciplinary character of the subject as well as the possible development and use of composites for novel and specific applications receives special attention.