{"title":"新型阻尼材料对轴向柱塞泵主噪声传递路径的降噪方法研究","authors":"Yang Pan, Rui Liu, X. He","doi":"10.3397/1/377042","DOIUrl":null,"url":null,"abstract":"Axial piston pump is complex fluid machinery with mechanical fluid coupling, and it has the characteristics of multiple noise sources. In order to solve the high noise problem of axial piston pump, this paper proposes a noise reduction method by identifying the main noise sources of\n axial piston pump and laying new damping materials to reduce noise. It breaks through the existing method of optimizing the parameters of piston pump shell and valve plate structure. A multi-parameter trajectory sensitivity identification and noise reduction method for vibration transmission\n path of axial piston pump is proposed in this paper. First, the lumped parameter method is used to establish the mathematical model of vibration transmission path of axial piston pump. The sensitivity of structural vibration response to transmission path multi-parameters are analyzed based\n on trajectory sensitivity method. The most sensitive parameters in the main noise transmission path are determined. Then, the experimental study of radiated noise transmission path of axial piston pump is carried out. A new type of viscous damping material is proposed to reduce the noise on\n the transmission path of the main noise source. The experimental results show that the noise of piston pump is reduced by 2.32 dB. The research results provide a new method and way for the design and manufacture of low noise piston pump.","PeriodicalId":49748,"journal":{"name":"Noise Control Engineering Journal","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on noise reduction method of main noise transmission path of axial piston pump with new damping material\",\"authors\":\"Yang Pan, Rui Liu, X. He\",\"doi\":\"10.3397/1/377042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Axial piston pump is complex fluid machinery with mechanical fluid coupling, and it has the characteristics of multiple noise sources. In order to solve the high noise problem of axial piston pump, this paper proposes a noise reduction method by identifying the main noise sources of\\n axial piston pump and laying new damping materials to reduce noise. It breaks through the existing method of optimizing the parameters of piston pump shell and valve plate structure. A multi-parameter trajectory sensitivity identification and noise reduction method for vibration transmission\\n path of axial piston pump is proposed in this paper. First, the lumped parameter method is used to establish the mathematical model of vibration transmission path of axial piston pump. The sensitivity of structural vibration response to transmission path multi-parameters are analyzed based\\n on trajectory sensitivity method. The most sensitive parameters in the main noise transmission path are determined. Then, the experimental study of radiated noise transmission path of axial piston pump is carried out. A new type of viscous damping material is proposed to reduce the noise on\\n the transmission path of the main noise source. The experimental results show that the noise of piston pump is reduced by 2.32 dB. The research results provide a new method and way for the design and manufacture of low noise piston pump.\",\"PeriodicalId\":49748,\"journal\":{\"name\":\"Noise Control Engineering Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Noise Control Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3397/1/377042\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise Control Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3397/1/377042","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Study on noise reduction method of main noise transmission path of axial piston pump with new damping material
Axial piston pump is complex fluid machinery with mechanical fluid coupling, and it has the characteristics of multiple noise sources. In order to solve the high noise problem of axial piston pump, this paper proposes a noise reduction method by identifying the main noise sources of
axial piston pump and laying new damping materials to reduce noise. It breaks through the existing method of optimizing the parameters of piston pump shell and valve plate structure. A multi-parameter trajectory sensitivity identification and noise reduction method for vibration transmission
path of axial piston pump is proposed in this paper. First, the lumped parameter method is used to establish the mathematical model of vibration transmission path of axial piston pump. The sensitivity of structural vibration response to transmission path multi-parameters are analyzed based
on trajectory sensitivity method. The most sensitive parameters in the main noise transmission path are determined. Then, the experimental study of radiated noise transmission path of axial piston pump is carried out. A new type of viscous damping material is proposed to reduce the noise on
the transmission path of the main noise source. The experimental results show that the noise of piston pump is reduced by 2.32 dB. The research results provide a new method and way for the design and manufacture of low noise piston pump.
期刊介绍:
NCEJ is the pre-eminent academic journal of noise control. It is the International Journal of the Institute of Noise Control Engineering of the USA. It is also produced with the participation and assistance of the Korean Society of Noise and Vibration Engineering (KSNVE).
NCEJ reaches noise control professionals around the world, covering over 50 national noise control societies and institutes.
INCE encourages you to submit your next paper to NCEJ. Choosing NCEJ:
Provides the opportunity to reach a global audience of NCE professionals, academics, and students;
Enhances the prestige of your work;
Validates your work by formal peer review.