{"title":"使用混合序列实现去偏估计","authors":"Arun Kumar Polala, G. Ökten","doi":"10.1515/mcma-2020-2075","DOIUrl":null,"url":null,"abstract":"Abstract We describe an implementation of the de-biased estimator using mixed sequences; these are sequences obtained from pseudorandom and low-discrepancy sequences. We use this implementation to numerically solve some stochastic differential equations from computational finance. The mixed sequences, when combined with Brownian bridge or principal component analysis constructions, offer convergence rates significantly better than the Monte Carlo implementation.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"26 1","pages":"293 - 301"},"PeriodicalIF":0.8000,"publicationDate":"2020-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mcma-2020-2075","citationCount":"1","resultStr":"{\"title\":\"Implementing de-biased estimators using mixed sequences\",\"authors\":\"Arun Kumar Polala, G. Ökten\",\"doi\":\"10.1515/mcma-2020-2075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We describe an implementation of the de-biased estimator using mixed sequences; these are sequences obtained from pseudorandom and low-discrepancy sequences. We use this implementation to numerically solve some stochastic differential equations from computational finance. The mixed sequences, when combined with Brownian bridge or principal component analysis constructions, offer convergence rates significantly better than the Monte Carlo implementation.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":\"26 1\",\"pages\":\"293 - 301\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/mcma-2020-2075\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2020-2075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2020-2075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Implementing de-biased estimators using mixed sequences
Abstract We describe an implementation of the de-biased estimator using mixed sequences; these are sequences obtained from pseudorandom and low-discrepancy sequences. We use this implementation to numerically solve some stochastic differential equations from computational finance. The mixed sequences, when combined with Brownian bridge or principal component analysis constructions, offer convergence rates significantly better than the Monte Carlo implementation.