关于Riesz空间中滤波器的阶收敛性

S. Kadhim, Shaimaa Abdul-Hussein Kadhim
{"title":"关于Riesz空间中滤波器的阶收敛性","authors":"S. Kadhim, Shaimaa Abdul-Hussein Kadhim","doi":"10.32894/kujss.2020.15.2.2","DOIUrl":null,"url":null,"abstract":"The main purpose of this paper, is study the ideas of orderConvergence of filters in a Riesz spaces and that is through prove an important theorems related to the some properties Riesz spaces. So we established that the intersection and union all subsets of the collection of all proper filters F(M) were converge to point in Riesz space it's the same convergence point the filter there exist in these subsets and proved that order-convergence for intersection (union) two filters to intersection (union) two different points in Riesz space is equivalent to the set consist of two convergence points we could write it by using these filters .","PeriodicalId":34247,"journal":{"name":"mjl@ jm`@ krkwk ldrst l`lmy@","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Order - Convergence of Filters in a Riesz Spaces\",\"authors\":\"S. Kadhim, Shaimaa Abdul-Hussein Kadhim\",\"doi\":\"10.32894/kujss.2020.15.2.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main purpose of this paper, is study the ideas of orderConvergence of filters in a Riesz spaces and that is through prove an important theorems related to the some properties Riesz spaces. So we established that the intersection and union all subsets of the collection of all proper filters F(M) were converge to point in Riesz space it's the same convergence point the filter there exist in these subsets and proved that order-convergence for intersection (union) two filters to intersection (union) two different points in Riesz space is equivalent to the set consist of two convergence points we could write it by using these filters .\",\"PeriodicalId\":34247,\"journal\":{\"name\":\"mjl@ jm`@ krkwk ldrst l`lmy@\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mjl@ jm`@ krkwk ldrst l`lmy@\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32894/kujss.2020.15.2.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mjl@ jm`@ krkwk ldrst l`lmy@","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32894/kujss.2020.15.2.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是通过证明与Riesz空间的一些性质有关的一个重要定理,研究Riesz空间中滤波器的有序收敛性思想。因此我们建立了所有固有滤波器集合F(M)的交集和并集都收敛于Riesz空间中的点它们是同一个收敛点这些子集中存在滤波器并证明了交集(并)两个滤波器到交集(并)Riesz空间中两个不同点的序收敛等价于由两个收敛点组成的集合我们可以用这些滤波器来写。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Order - Convergence of Filters in a Riesz Spaces
The main purpose of this paper, is study the ideas of orderConvergence of filters in a Riesz spaces and that is through prove an important theorems related to the some properties Riesz spaces. So we established that the intersection and union all subsets of the collection of all proper filters F(M) were converge to point in Riesz space it's the same convergence point the filter there exist in these subsets and proved that order-convergence for intersection (union) two filters to intersection (union) two different points in Riesz space is equivalent to the set consist of two convergence points we could write it by using these filters .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
3
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信