下载PDF
{"title":"基于质谱的非靶向植物代谢组学","authors":"Leonardo Perez de Souza, Saleh Alseekh, Thomas Naake, Alisdair Fernie","doi":"10.1002/cppb.20100","DOIUrl":null,"url":null,"abstract":"<p>Metabolomics has grown into one of the major approaches for systems biology studies, in part driven by developments in mass spectrometry (MS), providing high sensitivity and coverage of the metabolome at high throughput. Untargeted metabolomics allows for the investigation of metabolic phenotypes involving several hundreds to thousands of metabolites. In this approach, all signals in a mass chromatogram are processed in an unbiased way, allowing for a deeper investigation of metabolic phenotypes, but also resulting in significantly more complex data processing and post-processing steps. In this article, we discuss all the intricacies involved in extracting and analyzing metabolites by chromatography coupled to MS, as well as the processing and analysis of such datasets. © 2019 The Authors.</p><p><b>Basic Protocol 1</b>: Metabolite extraction for LC-MS</p><p><b>Alternate Protocol</b>: Methyl <i>tert</i>-butyl ether (MTBE) extraction for multiple mass spectrometry platforms (GC-polar, LC-polar, LC-lipid)</p><p><b>Basic Protocol 2</b>: LC-MS analysis</p><p><b>Support Protocol 1</b>: GC-MS derivatization and analysis</p><p><b>Support Protocol 2</b>: Lipid analysis</p><p><b>Basic Protocol 3</b>: LC-MS data processing</p><p><b>Basic Protocol 4</b>: Data analysis</p><p><b>Basic Protocol 5</b>: Metabolite annotation</p><p><b>Support Protocol 3</b>: Molecular networking using MetNet</p><p><b>Support Protocol 4</b>: Co-injection of authentic standards</p>","PeriodicalId":10932,"journal":{"name":"Current protocols in plant biology","volume":"4 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cppb.20100","citationCount":"48","resultStr":"{\"title\":\"Mass Spectrometry-Based Untargeted Plant Metabolomics\",\"authors\":\"Leonardo Perez de Souza, Saleh Alseekh, Thomas Naake, Alisdair Fernie\",\"doi\":\"10.1002/cppb.20100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Metabolomics has grown into one of the major approaches for systems biology studies, in part driven by developments in mass spectrometry (MS), providing high sensitivity and coverage of the metabolome at high throughput. Untargeted metabolomics allows for the investigation of metabolic phenotypes involving several hundreds to thousands of metabolites. In this approach, all signals in a mass chromatogram are processed in an unbiased way, allowing for a deeper investigation of metabolic phenotypes, but also resulting in significantly more complex data processing and post-processing steps. In this article, we discuss all the intricacies involved in extracting and analyzing metabolites by chromatography coupled to MS, as well as the processing and analysis of such datasets. © 2019 The Authors.</p><p><b>Basic Protocol 1</b>: Metabolite extraction for LC-MS</p><p><b>Alternate Protocol</b>: Methyl <i>tert</i>-butyl ether (MTBE) extraction for multiple mass spectrometry platforms (GC-polar, LC-polar, LC-lipid)</p><p><b>Basic Protocol 2</b>: LC-MS analysis</p><p><b>Support Protocol 1</b>: GC-MS derivatization and analysis</p><p><b>Support Protocol 2</b>: Lipid analysis</p><p><b>Basic Protocol 3</b>: LC-MS data processing</p><p><b>Basic Protocol 4</b>: Data analysis</p><p><b>Basic Protocol 5</b>: Metabolite annotation</p><p><b>Support Protocol 3</b>: Molecular networking using MetNet</p><p><b>Support Protocol 4</b>: Co-injection of authentic standards</p>\",\"PeriodicalId\":10932,\"journal\":{\"name\":\"Current protocols in plant biology\",\"volume\":\"4 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cppb.20100\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protocols in plant biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cppb.20100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols in plant biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cppb.20100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 48
引用
批量引用
Mass Spectrometry-Based Untargeted Plant Metabolomics
Metabolomics has grown into one of the major approaches for systems biology studies, in part driven by developments in mass spectrometry (MS), providing high sensitivity and coverage of the metabolome at high throughput. Untargeted metabolomics allows for the investigation of metabolic phenotypes involving several hundreds to thousands of metabolites. In this approach, all signals in a mass chromatogram are processed in an unbiased way, allowing for a deeper investigation of metabolic phenotypes, but also resulting in significantly more complex data processing and post-processing steps. In this article, we discuss all the intricacies involved in extracting and analyzing metabolites by chromatography coupled to MS, as well as the processing and analysis of such datasets. © 2019 The Authors.
Basic Protocol 1 : Metabolite extraction for LC-MS
Alternate Protocol : Methyl tert -butyl ether (MTBE) extraction for multiple mass spectrometry platforms (GC-polar, LC-polar, LC-lipid)
Basic Protocol 2 : LC-MS analysis
Support Protocol 1 : GC-MS derivatization and analysis
Support Protocol 2 : Lipid analysis
Basic Protocol 3 : LC-MS data processing
Basic Protocol 4 : Data analysis
Basic Protocol 5 : Metabolite annotation
Support Protocol 3 : Molecular networking using MetNet
Support Protocol 4 : Co-injection of authentic standards