{"title":"卫星数据在反演黑海水域光吸收特性中的应用","authors":"V. S. Suetin, S. Korolev","doi":"10.22449/1573-160X-2021-2-205-214","DOIUrl":null,"url":null,"abstract":"Purpose. he work is aimed at studying the effects of light absorption in the Black Sea waters with due regard for the variations of its individual components, and how they are manifested in the NASA archival results of calculating the chlorophyll a concentration obtained by processing satellite data using the universal operational method. Methods and Results. The NASA archival data of the MODIS and SeaWiFS satellite instruments, and the values of the light absorption components (determined by the method of Generalized ocean color inversion model for retrieving marine inherent optical properties (GIOP)) related to yellow substance and phytoplankton were analyzed. In order to avoid possible manifestations of various distortions in the results of determining the remote sensing reflectance of the sea and in the products resulted from application of the GIOP method, only the specially selected and sufficiently reliable test data from two areas located near the Crimea Southern Coast and south of the Danube estuary were used. Conclusions. In the considered examples with low content of chlorophyll a in the seawater, the yellow substance plays a predominant role in light absorption in the spectrum blue part, whereas if the chlorophyll a content is high, the phytoplankton contribution is dominant. The revealed relationship between the light absorption components related to yellow substance and phytoplankton significantly differs from that implicitly preset as a basis of the universal method (applied in NASA for the satellite data operational processing) for determining the chlorophyll a concentration. This, in its turn, is manifested in the fact that the data on the chlorophyll a concentration in the Black Sea stored in the NASA archive may be overestimated in case the chlorophyll a concentration is low, and underestimated – in case it is high.","PeriodicalId":43550,"journal":{"name":"Physical Oceanography","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of Satellite Data for Retrieving the Light Absorption Characteristics in the Black Sea Waters\",\"authors\":\"V. S. Suetin, S. Korolev\",\"doi\":\"10.22449/1573-160X-2021-2-205-214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose. he work is aimed at studying the effects of light absorption in the Black Sea waters with due regard for the variations of its individual components, and how they are manifested in the NASA archival results of calculating the chlorophyll a concentration obtained by processing satellite data using the universal operational method. Methods and Results. The NASA archival data of the MODIS and SeaWiFS satellite instruments, and the values of the light absorption components (determined by the method of Generalized ocean color inversion model for retrieving marine inherent optical properties (GIOP)) related to yellow substance and phytoplankton were analyzed. In order to avoid possible manifestations of various distortions in the results of determining the remote sensing reflectance of the sea and in the products resulted from application of the GIOP method, only the specially selected and sufficiently reliable test data from two areas located near the Crimea Southern Coast and south of the Danube estuary were used. Conclusions. In the considered examples with low content of chlorophyll a in the seawater, the yellow substance plays a predominant role in light absorption in the spectrum blue part, whereas if the chlorophyll a content is high, the phytoplankton contribution is dominant. The revealed relationship between the light absorption components related to yellow substance and phytoplankton significantly differs from that implicitly preset as a basis of the universal method (applied in NASA for the satellite data operational processing) for determining the chlorophyll a concentration. This, in its turn, is manifested in the fact that the data on the chlorophyll a concentration in the Black Sea stored in the NASA archive may be overestimated in case the chlorophyll a concentration is low, and underestimated – in case it is high.\",\"PeriodicalId\":43550,\"journal\":{\"name\":\"Physical Oceanography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Oceanography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22449/1573-160X-2021-2-205-214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Oceanography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22449/1573-160X-2021-2-205-214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Application of Satellite Data for Retrieving the Light Absorption Characteristics in the Black Sea Waters
Purpose. he work is aimed at studying the effects of light absorption in the Black Sea waters with due regard for the variations of its individual components, and how they are manifested in the NASA archival results of calculating the chlorophyll a concentration obtained by processing satellite data using the universal operational method. Methods and Results. The NASA archival data of the MODIS and SeaWiFS satellite instruments, and the values of the light absorption components (determined by the method of Generalized ocean color inversion model for retrieving marine inherent optical properties (GIOP)) related to yellow substance and phytoplankton were analyzed. In order to avoid possible manifestations of various distortions in the results of determining the remote sensing reflectance of the sea and in the products resulted from application of the GIOP method, only the specially selected and sufficiently reliable test data from two areas located near the Crimea Southern Coast and south of the Danube estuary were used. Conclusions. In the considered examples with low content of chlorophyll a in the seawater, the yellow substance plays a predominant role in light absorption in the spectrum blue part, whereas if the chlorophyll a content is high, the phytoplankton contribution is dominant. The revealed relationship between the light absorption components related to yellow substance and phytoplankton significantly differs from that implicitly preset as a basis of the universal method (applied in NASA for the satellite data operational processing) for determining the chlorophyll a concentration. This, in its turn, is manifested in the fact that the data on the chlorophyll a concentration in the Black Sea stored in the NASA archive may be overestimated in case the chlorophyll a concentration is low, and underestimated – in case it is high.