双四元数severi - brauer品种的Chow群

Pub Date : 2021-10-31 DOI:10.2140/pjm.2022.321.359
Eoin Mackall
{"title":"双四元数severi - brauer品种的Chow群","authors":"Eoin Mackall","doi":"10.2140/pjm.2022.321.359","DOIUrl":null,"url":null,"abstract":"We provide an alternative proof that the Chow group of $1$-cycles on a Severi--Brauer variety associated to a biquaternion division algebra is torsion-free. There are three proofs of this result in the literature, all of which are due to Karpenko and rely on a clever use of $K$-theory. The proof that we give here, by contrast, is geometric and uses degenerations of quartic elliptic normal curves.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Chow groups of a biquaternion\\nSeveri–Brauer variety\",\"authors\":\"Eoin Mackall\",\"doi\":\"10.2140/pjm.2022.321.359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide an alternative proof that the Chow group of $1$-cycles on a Severi--Brauer variety associated to a biquaternion division algebra is torsion-free. There are three proofs of this result in the literature, all of which are due to Karpenko and rely on a clever use of $K$-theory. The proof that we give here, by contrast, is geometric and uses degenerations of quartic elliptic normal curves.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2022.321.359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2022.321.359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提供了一个可供选择的证明,即与双四元数除法代数相关的Severi-Bauer变种上的$1$-环的Chow群是无扭的。这一结果在文献中有三种证明,都是由于Karpenko,并依赖于$K$-理论的巧妙运用。相反,我们在这里给出的证明是几何的,并且使用了四次椭圆法线曲线的退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Chow groups of a biquaternion Severi–Brauer variety
We provide an alternative proof that the Chow group of $1$-cycles on a Severi--Brauer variety associated to a biquaternion division algebra is torsion-free. There are three proofs of this result in the literature, all of which are due to Karpenko and rely on a clever use of $K$-theory. The proof that we give here, by contrast, is geometric and uses degenerations of quartic elliptic normal curves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信