Fernando J. Pérez-Porras, J. Torres-Sánchez, F. López-Granados, F. Mesas-Carrascosa
{"title":"基于YOLO结构的小麦罂粟早期和地面图像检测","authors":"Fernando J. Pérez-Porras, J. Torres-Sánchez, F. López-Granados, F. Mesas-Carrascosa","doi":"10.1017/wsc.2022.64","DOIUrl":null,"url":null,"abstract":"Abstract Poppy (also common poppy or corn poppy; Papaver rhoeas L., PAPRH) is one of the most harmful weeds in winter cereals. Knowing the precise and accurate location of weeds is essential for developing effective site-specific weed management (SSWM) for optimized herbicide use. Among the available tools for weed mapping, deep learning (DL) is used for its accuracy and ability to work in complex scenarios. Crops represent intricate situations for weed detection, as crop residues, occlusion of weeds, or spectral similarities between crop and weed seedlings are frequent. Timely discrimination of weeds is needed, because postemergence herbicides are used just when weeds and crops are at an early growth stage. This study addressed P. rhoeas early detection in wheat (Triticum spp.) by comparing the performance of six DL-based object-detection models focused on the “You Only Look Once” (YOLO) architecture (v3 to v5) using proximal RGB images to train the models. The models were assessed using open-source software, and evaluation offered a range of results for quality of recognition of P. rhoeas as well as computational capacity during the inference process. Of all the models, YOLOv5s performed best in the testing phase (75.3%, 76.2%, and 77% for F1-score, mean average precision, and accuracy, respectively). These results indicated that under real field conditions, DL-based object-detection strategies can identify P. rhoeas at an early stage, providing accurate information for developing SSWM.","PeriodicalId":23688,"journal":{"name":"Weed Science","volume":"71 1","pages":"50 - 58"},"PeriodicalIF":2.1000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Early and On-Ground Image-Based Detection of Poppy (Papaver rhoeas) in Wheat Using YOLO Architectures\",\"authors\":\"Fernando J. Pérez-Porras, J. Torres-Sánchez, F. López-Granados, F. Mesas-Carrascosa\",\"doi\":\"10.1017/wsc.2022.64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Poppy (also common poppy or corn poppy; Papaver rhoeas L., PAPRH) is one of the most harmful weeds in winter cereals. Knowing the precise and accurate location of weeds is essential for developing effective site-specific weed management (SSWM) for optimized herbicide use. Among the available tools for weed mapping, deep learning (DL) is used for its accuracy and ability to work in complex scenarios. Crops represent intricate situations for weed detection, as crop residues, occlusion of weeds, or spectral similarities between crop and weed seedlings are frequent. Timely discrimination of weeds is needed, because postemergence herbicides are used just when weeds and crops are at an early growth stage. This study addressed P. rhoeas early detection in wheat (Triticum spp.) by comparing the performance of six DL-based object-detection models focused on the “You Only Look Once” (YOLO) architecture (v3 to v5) using proximal RGB images to train the models. The models were assessed using open-source software, and evaluation offered a range of results for quality of recognition of P. rhoeas as well as computational capacity during the inference process. Of all the models, YOLOv5s performed best in the testing phase (75.3%, 76.2%, and 77% for F1-score, mean average precision, and accuracy, respectively). These results indicated that under real field conditions, DL-based object-detection strategies can identify P. rhoeas at an early stage, providing accurate information for developing SSWM.\",\"PeriodicalId\":23688,\"journal\":{\"name\":\"Weed Science\",\"volume\":\"71 1\",\"pages\":\"50 - 58\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weed Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1017/wsc.2022.64\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weed Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/wsc.2022.64","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Early and On-Ground Image-Based Detection of Poppy (Papaver rhoeas) in Wheat Using YOLO Architectures
Abstract Poppy (also common poppy or corn poppy; Papaver rhoeas L., PAPRH) is one of the most harmful weeds in winter cereals. Knowing the precise and accurate location of weeds is essential for developing effective site-specific weed management (SSWM) for optimized herbicide use. Among the available tools for weed mapping, deep learning (DL) is used for its accuracy and ability to work in complex scenarios. Crops represent intricate situations for weed detection, as crop residues, occlusion of weeds, or spectral similarities between crop and weed seedlings are frequent. Timely discrimination of weeds is needed, because postemergence herbicides are used just when weeds and crops are at an early growth stage. This study addressed P. rhoeas early detection in wheat (Triticum spp.) by comparing the performance of six DL-based object-detection models focused on the “You Only Look Once” (YOLO) architecture (v3 to v5) using proximal RGB images to train the models. The models were assessed using open-source software, and evaluation offered a range of results for quality of recognition of P. rhoeas as well as computational capacity during the inference process. Of all the models, YOLOv5s performed best in the testing phase (75.3%, 76.2%, and 77% for F1-score, mean average precision, and accuracy, respectively). These results indicated that under real field conditions, DL-based object-detection strategies can identify P. rhoeas at an early stage, providing accurate information for developing SSWM.
期刊介绍:
Weed Science publishes original research and scholarship in the form of peer-reviewed articles focused on fundamental research directly related to all aspects of weed science in agricultural systems. Topics for Weed Science include:
- the biology and ecology of weeds in agricultural, forestry, aquatic, turf, recreational, rights-of-way and other settings, genetics of weeds
- herbicide resistance, chemistry, biochemistry, physiology and molecular action of herbicides and plant growth regulators used to manage undesirable vegetation
- ecology of cropping and other agricultural systems as they relate to weed management
- biological and ecological aspects of weed control tools including biological agents, and herbicide resistant crops
- effect of weed management on soil, air and water.