{"title":"超连接逻辑和全连接逻辑的关联语义","authors":"J. Malinowski, Ricardo Arturo Nicolás-Francisco","doi":"10.12775/llp.2023.011","DOIUrl":null,"url":null,"abstract":"In this paper we present a characterization of hyper-connexivity by means of a relating semantics for Boolean connexive logics. We also show that the minimal Boolean connexive logic is Abelardian, strongly consistent, Kapsner strong and antiparadox. We give an example showing that the minimal Boolean connexive logic is not simplificative. This shows that the minimal Boolean connexive logic is not totally connexive.","PeriodicalId":43501,"journal":{"name":"Logic and Logical Philosophy","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relating Semantics for Hyper-Connexive and Totally Connexive Logics\",\"authors\":\"J. Malinowski, Ricardo Arturo Nicolás-Francisco\",\"doi\":\"10.12775/llp.2023.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a characterization of hyper-connexivity by means of a relating semantics for Boolean connexive logics. We also show that the minimal Boolean connexive logic is Abelardian, strongly consistent, Kapsner strong and antiparadox. We give an example showing that the minimal Boolean connexive logic is not simplificative. This shows that the minimal Boolean connexive logic is not totally connexive.\",\"PeriodicalId\":43501,\"journal\":{\"name\":\"Logic and Logical Philosophy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logic and Logical Philosophy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12775/llp.2023.011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic and Logical Philosophy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/llp.2023.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
Relating Semantics for Hyper-Connexive and Totally Connexive Logics
In this paper we present a characterization of hyper-connexivity by means of a relating semantics for Boolean connexive logics. We also show that the minimal Boolean connexive logic is Abelardian, strongly consistent, Kapsner strong and antiparadox. We give an example showing that the minimal Boolean connexive logic is not simplificative. This shows that the minimal Boolean connexive logic is not totally connexive.