用于并网光伏微电网能量管理的改进Q学习

IF 1 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Erick O. Arwa;Komla A. Folly
{"title":"用于并网光伏微电网能量管理的改进Q学习","authors":"Erick O. Arwa;Komla A. Folly","doi":"10.23919/SAIEE.2021.9432896","DOIUrl":null,"url":null,"abstract":"This paper proposes an improved Q-learning method to obtain near-optimal schedules for grid and battery power in a grid-connected electric vehicle charging station for a 24-hour horizon. The charging station is supplied by a solar PV generator with a backup from the utility grid. The grid tariff model is dynamic in line with the smart grid paradigm. First, the mathematical formulation of the problem is developed highlighting each of the cost components considered including battery degradation cost and the real-time tariff for grid power purchase cost. The problem is then formulated as a Markov Decision Process (MDP), i.e., defining each of the parts of a reinforcement learning environment for the charging station’s operation. The MDP is solved using the improved Q-learning algorithm proposed in this paper and the results are compared with the conventional Q-learning method. Specifically, the paper proposes to modify the action-space of a Q-learning algorithm so that each state has just the list of actions that meet a power balance constraint. The Q-table updates are done asynchronously, i.e., the agent does not sweep through the entire state-space in each episode. Simulation results show that the improved Q-learning algorithm returns a 14% lower global cost and achieves higher total rewards than the conventional Q-learning method. Furthermore, it is shown that the improved Q-learning method is more stable in terms of the sensitivity to the learning rate than the conventional Q-learning.","PeriodicalId":42493,"journal":{"name":"SAIEE Africa Research Journal","volume":"112 2","pages":"77-88"},"PeriodicalIF":1.0000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.23919/SAIEE.2021.9432896","citationCount":"4","resultStr":"{\"title\":\"Improved Q-learning for Energy Management in a Grid-tied PV Microgrid\",\"authors\":\"Erick O. Arwa;Komla A. Folly\",\"doi\":\"10.23919/SAIEE.2021.9432896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an improved Q-learning method to obtain near-optimal schedules for grid and battery power in a grid-connected electric vehicle charging station for a 24-hour horizon. The charging station is supplied by a solar PV generator with a backup from the utility grid. The grid tariff model is dynamic in line with the smart grid paradigm. First, the mathematical formulation of the problem is developed highlighting each of the cost components considered including battery degradation cost and the real-time tariff for grid power purchase cost. The problem is then formulated as a Markov Decision Process (MDP), i.e., defining each of the parts of a reinforcement learning environment for the charging station’s operation. The MDP is solved using the improved Q-learning algorithm proposed in this paper and the results are compared with the conventional Q-learning method. Specifically, the paper proposes to modify the action-space of a Q-learning algorithm so that each state has just the list of actions that meet a power balance constraint. The Q-table updates are done asynchronously, i.e., the agent does not sweep through the entire state-space in each episode. Simulation results show that the improved Q-learning algorithm returns a 14% lower global cost and achieves higher total rewards than the conventional Q-learning method. Furthermore, it is shown that the improved Q-learning method is more stable in terms of the sensitivity to the learning rate than the conventional Q-learning.\",\"PeriodicalId\":42493,\"journal\":{\"name\":\"SAIEE Africa Research Journal\",\"volume\":\"112 2\",\"pages\":\"77-88\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.23919/SAIEE.2021.9432896\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAIEE Africa Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9432896/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAIEE Africa Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9432896/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种改进的Q学习方法,以获得24小时内并网电动汽车充电站电网和电池功率的接近最优调度。充电站由太阳能光伏发电机供电,并由公用电网提供备用。电网电价模型是动态的,符合智能电网模式。首先,开发了该问题的数学公式,突出了所考虑的每个成本组成部分,包括电池退化成本和电网购电成本的实时电价。然后,该问题被公式化为马尔可夫决策过程(MDP),即,为充电站的操作定义强化学习环境的每个部分。使用本文提出的改进的Q学习算法求解MDP,并将结果与传统的Q学习方法进行了比较。具体来说,本文提出修改Q学习算法的动作空间,使每个状态只有满足功率平衡约束的动作列表。Q表更新是异步完成的,即代理不会在每个事件中扫过整个状态空间。仿真结果表明,与传统的Q学习方法相比,改进的Q学习算法的全局成本降低了14%,并获得了更高的总回报。此外,研究表明,改进的Q学习方法在对学习率的敏感性方面比传统的Q学习更稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Q-learning for Energy Management in a Grid-tied PV Microgrid
This paper proposes an improved Q-learning method to obtain near-optimal schedules for grid and battery power in a grid-connected electric vehicle charging station for a 24-hour horizon. The charging station is supplied by a solar PV generator with a backup from the utility grid. The grid tariff model is dynamic in line with the smart grid paradigm. First, the mathematical formulation of the problem is developed highlighting each of the cost components considered including battery degradation cost and the real-time tariff for grid power purchase cost. The problem is then formulated as a Markov Decision Process (MDP), i.e., defining each of the parts of a reinforcement learning environment for the charging station’s operation. The MDP is solved using the improved Q-learning algorithm proposed in this paper and the results are compared with the conventional Q-learning method. Specifically, the paper proposes to modify the action-space of a Q-learning algorithm so that each state has just the list of actions that meet a power balance constraint. The Q-table updates are done asynchronously, i.e., the agent does not sweep through the entire state-space in each episode. Simulation results show that the improved Q-learning algorithm returns a 14% lower global cost and achieves higher total rewards than the conventional Q-learning method. Furthermore, it is shown that the improved Q-learning method is more stable in terms of the sensitivity to the learning rate than the conventional Q-learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SAIEE Africa Research Journal
SAIEE Africa Research Journal ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
0.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信