{"title":"伴随希尔伯特模伽罗瓦表示的欧拉系统","authors":"E. Urban","doi":"10.5802/jtnb.1191","DOIUrl":null,"url":null,"abstract":"We prove the existence of Euler systems for adjoint modular Galois representations using deformations of Galois representations coming from Hilbert modular forms and relate them to p-adic L-functions under a conjectural formula for the Fitting ideals of some equivariant congruence modules for abelian base change.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Euler systems for adjoint Hilbert modular Galois representations\",\"authors\":\"E. Urban\",\"doi\":\"10.5802/jtnb.1191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the existence of Euler systems for adjoint modular Galois representations using deformations of Galois representations coming from Hilbert modular forms and relate them to p-adic L-functions under a conjectural formula for the Fitting ideals of some equivariant congruence modules for abelian base change.\",\"PeriodicalId\":48896,\"journal\":{\"name\":\"Journal De Theorie Des Nombres De Bordeaux\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Theorie Des Nombres De Bordeaux\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1191\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1191","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
On Euler systems for adjoint Hilbert modular Galois representations
We prove the existence of Euler systems for adjoint modular Galois representations using deformations of Galois representations coming from Hilbert modular forms and relate them to p-adic L-functions under a conjectural formula for the Fitting ideals of some equivariant congruence modules for abelian base change.