{"title":"fock-bargmann-hartogs定域上的两个定理","authors":"A. Kodama, S. Shimizu","doi":"10.18910/73626","DOIUrl":null,"url":null,"abstract":"In this paper, we prove two mutually independent theorems on the family of Fock-BargmannHartogs domains. Let D1 and D2 be two Fock-Bargmann-Hartogs domains in CN1 and CN2 , respectively. In Theorem 1, we obtain a complete description of an arbitrarily given proper holomorphic mapping between D1 and D2 in the case where N1 = N2. Also, we shall give a geometric interpretation of Theorem 1. And, in Theorem 2, we determine the structure of Aut(D1 × D2) using the data of Aut(D1) and Aut(D2) for arbitrary N1 and N2.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"TWO THEOREMS ON THE FOCK-BARGMANN-HARTOGS DOMAINS\",\"authors\":\"A. Kodama, S. Shimizu\",\"doi\":\"10.18910/73626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove two mutually independent theorems on the family of Fock-BargmannHartogs domains. Let D1 and D2 be two Fock-Bargmann-Hartogs domains in CN1 and CN2 , respectively. In Theorem 1, we obtain a complete description of an arbitrarily given proper holomorphic mapping between D1 and D2 in the case where N1 = N2. Also, we shall give a geometric interpretation of Theorem 1. And, in Theorem 2, we determine the structure of Aut(D1 × D2) using the data of Aut(D1) and Aut(D2) for arbitrary N1 and N2.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/73626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/73626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we prove two mutually independent theorems on the family of Fock-BargmannHartogs domains. Let D1 and D2 be two Fock-Bargmann-Hartogs domains in CN1 and CN2 , respectively. In Theorem 1, we obtain a complete description of an arbitrarily given proper holomorphic mapping between D1 and D2 in the case where N1 = N2. Also, we shall give a geometric interpretation of Theorem 1. And, in Theorem 2, we determine the structure of Aut(D1 × D2) using the data of Aut(D1) and Aut(D2) for arbitrary N1 and N2.