fock-bargmann-hartogs定域上的两个定理

IF 0.5 4区 数学 Q3 MATHEMATICS
A. Kodama, S. Shimizu
{"title":"fock-bargmann-hartogs定域上的两个定理","authors":"A. Kodama, S. Shimizu","doi":"10.18910/73626","DOIUrl":null,"url":null,"abstract":"In this paper, we prove two mutually independent theorems on the family of Fock-BargmannHartogs domains. Let D1 and D2 be two Fock-Bargmann-Hartogs domains in CN1 and CN2 , respectively. In Theorem 1, we obtain a complete description of an arbitrarily given proper holomorphic mapping between D1 and D2 in the case where N1 = N2. Also, we shall give a geometric interpretation of Theorem 1. And, in Theorem 2, we determine the structure of Aut(D1 × D2) using the data of Aut(D1) and Aut(D2) for arbitrary N1 and N2.","PeriodicalId":54660,"journal":{"name":"Osaka Journal of Mathematics","volume":"56 1","pages":"739-757"},"PeriodicalIF":0.5000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"TWO THEOREMS ON THE FOCK-BARGMANN-HARTOGS DOMAINS\",\"authors\":\"A. Kodama, S. Shimizu\",\"doi\":\"10.18910/73626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove two mutually independent theorems on the family of Fock-BargmannHartogs domains. Let D1 and D2 be two Fock-Bargmann-Hartogs domains in CN1 and CN2 , respectively. In Theorem 1, we obtain a complete description of an arbitrarily given proper holomorphic mapping between D1 and D2 in the case where N1 = N2. Also, we shall give a geometric interpretation of Theorem 1. And, in Theorem 2, we determine the structure of Aut(D1 × D2) using the data of Aut(D1) and Aut(D2) for arbitrary N1 and N2.\",\"PeriodicalId\":54660,\"journal\":{\"name\":\"Osaka Journal of Mathematics\",\"volume\":\"56 1\",\"pages\":\"739-757\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Osaka Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/73626\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osaka Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/73626","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文证明了Fock-BargmannHartogs定域族上的两个相互独立的定理。设D1和D2分别为CN1和CN2中的两个Fock-Bargmann-Hartogs结构域。在定理1中,我们得到了当N1 = N2时,D1与D2之间任意给定的真全纯映射的完整描述。同时,我们将给出定理1的几何解释。在定理2中,我们利用任意N1和N2下的Aut(D1)和Aut(D2)的数据确定了Aut(D1 × D2)的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TWO THEOREMS ON THE FOCK-BARGMANN-HARTOGS DOMAINS
In this paper, we prove two mutually independent theorems on the family of Fock-BargmannHartogs domains. Let D1 and D2 be two Fock-Bargmann-Hartogs domains in CN1 and CN2 , respectively. In Theorem 1, we obtain a complete description of an arbitrarily given proper holomorphic mapping between D1 and D2 in the case where N1 = N2. Also, we shall give a geometric interpretation of Theorem 1. And, in Theorem 2, we determine the structure of Aut(D1 × D2) using the data of Aut(D1) and Aut(D2) for arbitrary N1 and N2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Osaka Journal of Mathematics is published quarterly by the joint editorship of the Department of Mathematics, Graduate School of Science, Osaka University, and the Department of Mathematics, Faculty of Science, Osaka City University and the Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University with the cooperation of the Department of Mathematical Sciences, Faculty of Engineering Science, Osaka University. The Journal is devoted entirely to the publication of original works in pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信