Y. Gu, G. Peng, Xiaoyun Fu, G. S. Song, S.S. Chen, S.Y. Chen
{"title":"基于实验研究和第一性原理计算的AlP改性Al-20Si合金中Si形态的机理","authors":"Y. Gu, G. Peng, Xiaoyun Fu, G. S. Song, S.S. Chen, S.Y. Chen","doi":"10.1080/13640461.2023.2204041","DOIUrl":null,"url":null,"abstract":"ABSTRACT The modifying influence of aluminium phosphide to the morphology of primary Si and eutectic Si was investigated in hypereutectic Al-20Si alloys via adding Al-Cu-P master alloy (0.5, 1, 20 wt.%). Microstructural results showed when Al-Cu-P addition from 0 to 0.5%, primary Si phase decreases and eutectic Si phase size remains invariable; when addition higher than 0.5%, primary Si phase keeps invariable, eutectic Si phase size increases. To prove the nucleation effect of AlP on Si phase, interfacial properties of Si/AlP interface were investigated using first-principles calculations. Results showed the AlP(100)/Si(100) interface energy is between −1.45 J/m2 and −1.38 J/m2 for Al-terminated and P-terminated AlP model, both is much smaller than liquid Si/crystalline Si interface (0.34 J/m2), consolidates that AlP particles possess strong nucleation potency for Si phases. Therefore, the modifying influence of AlP to the morphology Si phase is well clarified as a function of AlP content in Al-20Si alloys. ","PeriodicalId":13939,"journal":{"name":"International Journal of Cast Metals Research","volume":"36 1","pages":"56 - 64"},"PeriodicalIF":1.3000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of AlP modifying the morphology of Si in Al-20Si alloys based on experimental studies and first-principles calculations\",\"authors\":\"Y. Gu, G. Peng, Xiaoyun Fu, G. S. Song, S.S. Chen, S.Y. Chen\",\"doi\":\"10.1080/13640461.2023.2204041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The modifying influence of aluminium phosphide to the morphology of primary Si and eutectic Si was investigated in hypereutectic Al-20Si alloys via adding Al-Cu-P master alloy (0.5, 1, 20 wt.%). Microstructural results showed when Al-Cu-P addition from 0 to 0.5%, primary Si phase decreases and eutectic Si phase size remains invariable; when addition higher than 0.5%, primary Si phase keeps invariable, eutectic Si phase size increases. To prove the nucleation effect of AlP on Si phase, interfacial properties of Si/AlP interface were investigated using first-principles calculations. Results showed the AlP(100)/Si(100) interface energy is between −1.45 J/m2 and −1.38 J/m2 for Al-terminated and P-terminated AlP model, both is much smaller than liquid Si/crystalline Si interface (0.34 J/m2), consolidates that AlP particles possess strong nucleation potency for Si phases. Therefore, the modifying influence of AlP to the morphology Si phase is well clarified as a function of AlP content in Al-20Si alloys. \",\"PeriodicalId\":13939,\"journal\":{\"name\":\"International Journal of Cast Metals Research\",\"volume\":\"36 1\",\"pages\":\"56 - 64\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cast Metals Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/13640461.2023.2204041\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cast Metals Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/13640461.2023.2204041","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Mechanism of AlP modifying the morphology of Si in Al-20Si alloys based on experimental studies and first-principles calculations
ABSTRACT The modifying influence of aluminium phosphide to the morphology of primary Si and eutectic Si was investigated in hypereutectic Al-20Si alloys via adding Al-Cu-P master alloy (0.5, 1, 20 wt.%). Microstructural results showed when Al-Cu-P addition from 0 to 0.5%, primary Si phase decreases and eutectic Si phase size remains invariable; when addition higher than 0.5%, primary Si phase keeps invariable, eutectic Si phase size increases. To prove the nucleation effect of AlP on Si phase, interfacial properties of Si/AlP interface were investigated using first-principles calculations. Results showed the AlP(100)/Si(100) interface energy is between −1.45 J/m2 and −1.38 J/m2 for Al-terminated and P-terminated AlP model, both is much smaller than liquid Si/crystalline Si interface (0.34 J/m2), consolidates that AlP particles possess strong nucleation potency for Si phases. Therefore, the modifying influence of AlP to the morphology Si phase is well clarified as a function of AlP content in Al-20Si alloys.
期刊介绍:
The International Journal of Cast Metals Research is devoted to the dissemination of peer reviewed information on the science and engineering of cast metals, solidification and casting processes. Assured production of high integrity castings requires an integrated approach that optimises casting, mould and gating design; mould materials and binders; alloy composition and microstructure; metal melting, modification and handling; dimensional control; and finishing and post-treatment of the casting. The Journal reports advances in both the fundamental science and materials and production engineering contributing to the successful manufacture of fit for purpose castings.