散装强物质:三位一体

IF 7.7 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
X. Lai, C. Xia, Renxin Xu
{"title":"散装强物质:三位一体","authors":"X. Lai, C. Xia, Renxin Xu","doi":"10.1080/23746149.2022.2137433","DOIUrl":null,"url":null,"abstract":"Our world is wonderful because of the normal but negligibly small baryonic part (i.e., atoms) although unknown dark matter and dark energy dominate the Universe. A stable atomic nucleus could be simply termed as ``strong matter'' since its nature is dominated by the fundamental strong interaction. Is there any other form of strong matter? Although nuclei are composed of 2-flavoured (i.e., up and down flavours of valence quarks) nucleons, it is conjectured that bulk strong matter could be 3-flavoured (with additional strange quarks) if the baryon number exceeds the critical value, $A_{\\rm c}$, in which case quarks could be either free (so-called strange quark matter) or localized (in strangeons, coined by combining ``strange nucleon''). Bulk strong matter could be manifested in the form of compact stars, cosmic rays, and even dark matter. This trinity will be explained in this brief review, that may impact dramatically on today's physics, particularly in the era of multi-messenger astronomy after the discovery of gravitational wave.","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2022-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Bulk strong matter: the trinity\",\"authors\":\"X. Lai, C. Xia, Renxin Xu\",\"doi\":\"10.1080/23746149.2022.2137433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our world is wonderful because of the normal but negligibly small baryonic part (i.e., atoms) although unknown dark matter and dark energy dominate the Universe. A stable atomic nucleus could be simply termed as ``strong matter'' since its nature is dominated by the fundamental strong interaction. Is there any other form of strong matter? Although nuclei are composed of 2-flavoured (i.e., up and down flavours of valence quarks) nucleons, it is conjectured that bulk strong matter could be 3-flavoured (with additional strange quarks) if the baryon number exceeds the critical value, $A_{\\\\rm c}$, in which case quarks could be either free (so-called strange quark matter) or localized (in strangeons, coined by combining ``strange nucleon''). Bulk strong matter could be manifested in the form of compact stars, cosmic rays, and even dark matter. This trinity will be explained in this brief review, that may impact dramatically on today's physics, particularly in the era of multi-messenger astronomy after the discovery of gravitational wave.\",\"PeriodicalId\":7374,\"journal\":{\"name\":\"Advances in Physics: X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2022-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Physics: X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/23746149.2022.2137433\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics: X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/23746149.2022.2137433","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

尽管未知的暗物质和暗能量主宰着宇宙,但我们的世界之所以美好,是因为有正常但可忽略的小重子部分(即原子)。稳定的原子核可以简单地称为“强物质”,因为它的性质由基本的强相互作用决定。还有其他形式的强物质吗?尽管原子核是由2味(即价夸克的上下味)核子组成的,但如果重子数超过临界值$A_,在这种情况下,夸克可以是自由的(所谓的奇异夸克物质),也可以是定域的(在奇异子中,由“奇异核子”组合而成)。大体积强物质可以以致密恒星、宇宙射线甚至暗物质的形式表现出来。这三位一体将在这篇简短的综述中得到解释,这可能会对今天的物理学产生巨大影响,特别是在引力波发现后的多信使天文学时代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bulk strong matter: the trinity
Our world is wonderful because of the normal but negligibly small baryonic part (i.e., atoms) although unknown dark matter and dark energy dominate the Universe. A stable atomic nucleus could be simply termed as ``strong matter'' since its nature is dominated by the fundamental strong interaction. Is there any other form of strong matter? Although nuclei are composed of 2-flavoured (i.e., up and down flavours of valence quarks) nucleons, it is conjectured that bulk strong matter could be 3-flavoured (with additional strange quarks) if the baryon number exceeds the critical value, $A_{\rm c}$, in which case quarks could be either free (so-called strange quark matter) or localized (in strangeons, coined by combining ``strange nucleon''). Bulk strong matter could be manifested in the form of compact stars, cosmic rays, and even dark matter. This trinity will be explained in this brief review, that may impact dramatically on today's physics, particularly in the era of multi-messenger astronomy after the discovery of gravitational wave.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Physics: X
Advances in Physics: X Physics and Astronomy-General Physics and Astronomy
CiteScore
13.60
自引率
0.00%
发文量
37
审稿时长
13 weeks
期刊介绍: Advances in Physics: X is a fully open-access journal that promotes the centrality of physics and physical measurement to modern science and technology. Advances in Physics: X aims to demonstrate the interconnectivity of physics, meaning the intellectual relationships that exist between one branch of physics and another, as well as the influence of physics across (hence the “X”) traditional boundaries into other disciplines including: Chemistry Materials Science Engineering Biology Medicine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信