{"title":"吸声材料汽车腔内声学分析基本解的局部化方法","authors":"Zengtao Chen null, Fajie Wang","doi":"10.4208/aamm.oa-2021-0197","DOIUrl":null,"url":null,"abstract":". This paper documents the first attempt to apply a localized method of fundamental solutions (LMFS) to the acoustic analysis of car cavity containing sound-absorbing materials. The LMFS is a recently developed meshless approach with the merits of being mathematically simple, numerically accurate, and requiring less computer time and storage. Compared with the traditional method of fundamental solutions (MFS) with a full interpolation matrix, the LMFS can obtain a sparse banded linear algebraic system, and can circumvent the perplexing issue of fictitious boundary encountered in the MFS for complex solution domains. In the LMFS, only circular or spherical fictitious boundary is involved. Based on these advantages, the method can be regarded as a competitive alternative to the standard method, especially for high-dimensional and large-scale problems. Three benchmark numerical examples are provided to verify the effectiveness and performance of the present method for the solution of car cavity acoustic problems with impedance conditions.","PeriodicalId":54384,"journal":{"name":"Advances in Applied Mathematics and Mechanics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Localized Method of Fundamental Solutions for Acoustic Analysis Inside a Car Cavity with Sound-Absorbing Material\",\"authors\":\"Zengtao Chen null, Fajie Wang\",\"doi\":\"10.4208/aamm.oa-2021-0197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This paper documents the first attempt to apply a localized method of fundamental solutions (LMFS) to the acoustic analysis of car cavity containing sound-absorbing materials. The LMFS is a recently developed meshless approach with the merits of being mathematically simple, numerically accurate, and requiring less computer time and storage. Compared with the traditional method of fundamental solutions (MFS) with a full interpolation matrix, the LMFS can obtain a sparse banded linear algebraic system, and can circumvent the perplexing issue of fictitious boundary encountered in the MFS for complex solution domains. In the LMFS, only circular or spherical fictitious boundary is involved. Based on these advantages, the method can be regarded as a competitive alternative to the standard method, especially for high-dimensional and large-scale problems. Three benchmark numerical examples are provided to verify the effectiveness and performance of the present method for the solution of car cavity acoustic problems with impedance conditions.\",\"PeriodicalId\":54384,\"journal\":{\"name\":\"Advances in Applied Mathematics and Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4208/aamm.oa-2021-0197\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4208/aamm.oa-2021-0197","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Localized Method of Fundamental Solutions for Acoustic Analysis Inside a Car Cavity with Sound-Absorbing Material
. This paper documents the first attempt to apply a localized method of fundamental solutions (LMFS) to the acoustic analysis of car cavity containing sound-absorbing materials. The LMFS is a recently developed meshless approach with the merits of being mathematically simple, numerically accurate, and requiring less computer time and storage. Compared with the traditional method of fundamental solutions (MFS) with a full interpolation matrix, the LMFS can obtain a sparse banded linear algebraic system, and can circumvent the perplexing issue of fictitious boundary encountered in the MFS for complex solution domains. In the LMFS, only circular or spherical fictitious boundary is involved. Based on these advantages, the method can be regarded as a competitive alternative to the standard method, especially for high-dimensional and large-scale problems. Three benchmark numerical examples are provided to verify the effectiveness and performance of the present method for the solution of car cavity acoustic problems with impedance conditions.
期刊介绍:
Advances in Applied Mathematics and Mechanics (AAMM) provides a fast communication platform among researchers using mathematics as a tool for solving problems in mechanics and engineering, with particular emphasis in the integration of theory and applications. To cover as wide audiences as possible, abstract or axiomatic mathematics is not encouraged. Innovative numerical analysis, numerical methods, and interdisciplinary applications are particularly welcome.