Md. Mahfuz Al Hasan, Md. Tahsin Mostafiz, Thomas An Le, Jake Julia, Nidish Vashistha, S. Taheri, N. Asadizanjani
{"title":"EVHA:用于硬件测试和保证的可解释视觉系统——综述","authors":"Md. Mahfuz Al Hasan, Md. Tahsin Mostafiz, Thomas An Le, Jake Julia, Nidish Vashistha, S. Taheri, N. Asadizanjani","doi":"10.1145/3590772","DOIUrl":null,"url":null,"abstract":"Due to the ever-growing demands for electronic chips in different sectors, semiconductor companies have been mandated to offshore their manufacturing processes. This unwanted matter has made security and trustworthiness of their fabricated chips concerning and has caused the creation of hardware attacks. In this condition, different entities in the semiconductor supply chain can act maliciously and execute an attack on the design computing layers, from devices to systems. Our attack is a hardware Trojan that is inserted during mask generation/fabrication in an untrusted foundry. The Trojan leaves a footprint in the fabrication through addition, deletion, or change of design cells. To tackle this problem, we propose EVHA (Explainable Vision System for Hardware Testing and Assurance) in this work, which can detect the smallest possible change to a design in a low-cost, accurate, and fast manner. The inputs to this system are scanning electron microscopy images acquired from the integrated circuits under examination. The system output is the determination of integrated circuit status in terms of having any defect and/or hardware Trojan through addition, deletion, or change in the design cells at the cell level. This article provides an overview on the design, development, implementation, and analysis of our defense system.","PeriodicalId":50924,"journal":{"name":"ACM Journal on Emerging Technologies in Computing Systems","volume":" ","pages":"1 - 25"},"PeriodicalIF":2.1000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"EVHA: Explainable Vision System for Hardware Testing and Assurance—An Overview\",\"authors\":\"Md. Mahfuz Al Hasan, Md. Tahsin Mostafiz, Thomas An Le, Jake Julia, Nidish Vashistha, S. Taheri, N. Asadizanjani\",\"doi\":\"10.1145/3590772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the ever-growing demands for electronic chips in different sectors, semiconductor companies have been mandated to offshore their manufacturing processes. This unwanted matter has made security and trustworthiness of their fabricated chips concerning and has caused the creation of hardware attacks. In this condition, different entities in the semiconductor supply chain can act maliciously and execute an attack on the design computing layers, from devices to systems. Our attack is a hardware Trojan that is inserted during mask generation/fabrication in an untrusted foundry. The Trojan leaves a footprint in the fabrication through addition, deletion, or change of design cells. To tackle this problem, we propose EVHA (Explainable Vision System for Hardware Testing and Assurance) in this work, which can detect the smallest possible change to a design in a low-cost, accurate, and fast manner. The inputs to this system are scanning electron microscopy images acquired from the integrated circuits under examination. The system output is the determination of integrated circuit status in terms of having any defect and/or hardware Trojan through addition, deletion, or change in the design cells at the cell level. This article provides an overview on the design, development, implementation, and analysis of our defense system.\",\"PeriodicalId\":50924,\"journal\":{\"name\":\"ACM Journal on Emerging Technologies in Computing Systems\",\"volume\":\" \",\"pages\":\"1 - 25\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Journal on Emerging Technologies in Computing Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3590772\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal on Emerging Technologies in Computing Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3590772","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
EVHA: Explainable Vision System for Hardware Testing and Assurance—An Overview
Due to the ever-growing demands for electronic chips in different sectors, semiconductor companies have been mandated to offshore their manufacturing processes. This unwanted matter has made security and trustworthiness of their fabricated chips concerning and has caused the creation of hardware attacks. In this condition, different entities in the semiconductor supply chain can act maliciously and execute an attack on the design computing layers, from devices to systems. Our attack is a hardware Trojan that is inserted during mask generation/fabrication in an untrusted foundry. The Trojan leaves a footprint in the fabrication through addition, deletion, or change of design cells. To tackle this problem, we propose EVHA (Explainable Vision System for Hardware Testing and Assurance) in this work, which can detect the smallest possible change to a design in a low-cost, accurate, and fast manner. The inputs to this system are scanning electron microscopy images acquired from the integrated circuits under examination. The system output is the determination of integrated circuit status in terms of having any defect and/or hardware Trojan through addition, deletion, or change in the design cells at the cell level. This article provides an overview on the design, development, implementation, and analysis of our defense system.
期刊介绍:
The Journal of Emerging Technologies in Computing Systems invites submissions of original technical papers describing research and development in emerging technologies in computing systems. Major economic and technical challenges are expected to impede the continued scaling of semiconductor devices. This has resulted in the search for alternate mechanical, biological/biochemical, nanoscale electronic, asynchronous and quantum computing and sensor technologies. As the underlying nanotechnologies continue to evolve in the labs of chemists, physicists, and biologists, it has become imperative for computer scientists and engineers to translate the potential of the basic building blocks (analogous to the transistor) emerging from these labs into information systems. Their design will face multiple challenges ranging from the inherent (un)reliability due to the self-assembly nature of the fabrication processes for nanotechnologies, from the complexity due to the sheer volume of nanodevices that will have to be integrated for complex functionality, and from the need to integrate these new nanotechnologies with silicon devices in the same system.
The journal provides comprehensive coverage of innovative work in the specification, design analysis, simulation, verification, testing, and evaluation of computing systems constructed out of emerging technologies and advanced semiconductors